Home
Class 12
MATHS
int1^3 (dx)/(x^2(1+x))...

`int_1^3 (dx)/(x^2(1+x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_1^3 \frac{dx}{x^2(1+x)} \), we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral as an indefinite integral: \[ I = \int \frac{dx}{x^2(1+x)} \] ### Step 2: Use Partial Fraction Decomposition Next, we will perform partial fraction decomposition on the integrand: \[ \frac{1}{x^2(1+x)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{1+x} \] Multiplying through by the denominator \( x^2(1+x) \) gives: \[ 1 = A x(1+x) + B(1+x) + C x^2 \] ### Step 3: Solve for Coefficients Expanding the right-hand side: \[ 1 = Ax + Ax^2 + B + Bx + Cx^2 \] Combining like terms: \[ 1 = (A + C)x^2 + (A + B)x + B \] Setting coefficients equal gives us the system: 1. \( A + C = 0 \) 2. \( A + B = 0 \) 3. \( B = 1 \) From \( B = 1 \), we find \( A + 1 = 0 \) which gives \( A = -1 \). Then from \( A + C = 0 \), we have \( -1 + C = 0 \) which gives \( C = 1 \). Thus, we have: \[ A = -1, \quad B = 1, \quad C = 1 \] ### Step 4: Rewrite the Integral Now we can rewrite the integral: \[ \int \left( \frac{-1}{x} + \frac{1}{x^2} + \frac{1}{1+x} \right) dx \] ### Step 5: Integrate Each Term Now we integrate term by term: \[ \int \left( -\frac{1}{x} + \frac{1}{x^2} + \frac{1}{1+x} \right) dx = -\ln|x| - \frac{1}{x} + \ln|1+x| + C \] ### Step 6: Evaluate the Definite Integral Now we evaluate the definite integral from 1 to 3: \[ I = \left[ -\ln|x| - \frac{1}{x} + \ln|1+x| \right]_1^3 \] Calculating at the upper limit \( x = 3 \): \[ -\ln(3) - \frac{1}{3} + \ln(4) \] Calculating at the lower limit \( x = 1 \): \[ -\ln(1) - 1 + \ln(2) = -1 + \ln(2) \] ### Step 7: Combine the Results Now we combine the results: \[ I = \left( -\ln(3) - \frac{1}{3} + \ln(4) \right) - \left( -1 + \ln(2) \right) \] This simplifies to: \[ I = -\ln(3) + \ln(4) + 1 - \ln(2) - \frac{1}{3} \] Using properties of logarithms: \[ \ln(4) - \ln(3) - \ln(2) = \ln\left(\frac{4}{3 \cdot 2}\right) = \ln\left(\frac{4}{6}\right) = \ln\left(\frac{2}{3}\right) \] Thus: \[ I = \ln\left(\frac{2}{3}\right) + 1 - \frac{1}{3} \] \[ I = \ln\left(\frac{2}{3}\right) + \frac{2}{3} \] ### Final Result The final result of the definite integral is: \[ I = \frac{2}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(1)^(3) (dx)/(x^(2)(x+1))=(2)/(3)+log .(2)/(3)

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

int_1^3 (1/x) dx

int_(1)^(3)(dx)/(x^(2)(x+1))

Prove that int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+(log2)/(3)

int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+(log2)/(3)

int_(1)^(3)(dx)/(x^(2)+[x]^(2)+1-2x[x]) ( where [x] is the largest integer not exceeding x )

The value of int_(1)^(3)(dx)/(x(1+x^(2))) is

(i) int_1^2 (dx)/((x+1)(x+2)) (ii) int_1^2 (x+3)/(x(x+2) dx

(i) int_0^1 (dx)/sqrt(1-x^2) (ii) int_0^1 (dx)/sqrt(1+x^2) (iii) a int_1^sqrt3 (dx)/(1+x^2) b int_0^1 (dx)/(1+x^2) (iv) int_0^(2//3) (dx)/(4+9x^2) (v) int_0^1 x/(x^2+1)dx (vi) int_2^3 x/(x^2+1) dx