Home
Class 12
MATHS
int0^pi (x dx)/(a^2 cos^2 x) , (a gt 1)...

`int_0^pi (x dx)/(a^2 cos^2 x) , (a gt 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^\pi \frac{x \, dx}{a^2 \cos^2 x} \) where \( a > 1 \), we will use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] ### Step 1: Define the Integral Let: \[ I = \int_0^\pi \frac{x}{a^2 \cos^2 x} \, dx \] ### Step 2: Apply the Property of Definite Integrals Using the property mentioned above, we can rewrite the integral: \[ I = \int_0^\pi \frac{\pi - x}{a^2 \cos^2(\pi - x)} \, dx \] Since \( \cos(\pi - x) = -\cos x \), we have: \[ \cos^2(\pi - x) = \cos^2 x \] Thus, we can rewrite the integral as: \[ I = \int_0^\pi \frac{\pi - x}{a^2 \cos^2 x} \, dx \] ### Step 3: Combine the Two Expressions for \( I \) Now, we have two expressions for \( I \): 1. \( I = \int_0^\pi \frac{x}{a^2 \cos^2 x} \, dx \) 2. \( I = \int_0^\pi \frac{\pi - x}{a^2 \cos^2 x} \, dx \) Adding these two equations: \[ 2I = \int_0^\pi \left( \frac{x + (\pi - x)}{a^2 \cos^2 x} \right) \, dx = \int_0^\pi \frac{\pi}{a^2 \cos^2 x} \, dx \] This simplifies to: \[ 2I = \frac{\pi}{a^2} \int_0^\pi \sec^2 x \, dx \] ### Step 4: Evaluate the Integral of \( \sec^2 x \) The integral of \( \sec^2 x \) is: \[ \int \sec^2 x \, dx = \tan x \] Evaluating from \( 0 \) to \( \pi \): \[ \int_0^\pi \sec^2 x \, dx = \tan(\pi) - \tan(0) = 0 - 0 = 0 \] ### Step 5: Substitute Back to Find \( I \) Substituting back: \[ 2I = \frac{\pi}{a^2} \cdot 0 = 0 \] Thus: \[ I = 0 \] ### Final Answer \[ \int_0^\pi \frac{x \, dx}{a^2 \cos^2 x} = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^pi (xSinx)/(1+Cos^2x)dx

int_(0)^(pi//2) (dx)/(1+2 cos x)

int_0^(pi/2) (dx)/(1+cos x)

int_0^(pi/2) (dx)/((4+9 cos^(2)x))

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx

The value of the integral int_(0)^(pi)(1)/(a^(2)-2a cos x+1)dx (a gt1) , is

int_0^(pi//2) x^2 cos 2x dx

int_0^pi (cos^2x)dx ,

int_(0)^(pi/2)(x)/(1+cos x)dx =