Home
Class 12
MATHS
int3^4 (dx)/sqrt(x^2+4)...

`int_3^4 (dx)/sqrt(x^2+4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_3^4 \frac{dx}{\sqrt{x^2 + 4}} \), we will follow these steps: ### Step 1: Identify the Integral We start with the integral: \[ I = \int_3^4 \frac{dx}{\sqrt{x^2 + 4}} \] ### Step 2: Recognize the Form The integral can be recognized as a standard form: \[ \int \frac{dx}{\sqrt{x^2 + a^2}} = \ln |x + \sqrt{x^2 + a^2}| + C \] where \( a = 2 \) in our case. ### Step 3: Apply the Formula Using the formula, we can rewrite our integral: \[ I = \left[ \ln |x + \sqrt{x^2 + 4}| \right]_3^4 \] ### Step 4: Evaluate at the Upper Limit First, we evaluate at the upper limit \( x = 4 \): \[ \ln |4 + \sqrt{4^2 + 4}| = \ln |4 + \sqrt{16 + 4}| = \ln |4 + \sqrt{20}| = \ln |4 + 2\sqrt{5}| \] ### Step 5: Evaluate at the Lower Limit Now, we evaluate at the lower limit \( x = 3 \): \[ \ln |3 + \sqrt{3^2 + 4}| = \ln |3 + \sqrt{9 + 4}| = \ln |3 + \sqrt{13}| \] ### Step 6: Combine the Results Now we can combine the results from the upper and lower limits: \[ I = \ln |4 + 2\sqrt{5}| - \ln |3 + \sqrt{13}| \] ### Step 7: Use Logarithmic Properties Using the property of logarithms \( \ln a - \ln b = \ln \frac{a}{b} \): \[ I = \ln \left( \frac{4 + 2\sqrt{5}}{3 + \sqrt{13}} \right) \] ### Final Answer Thus, the value of the integral is: \[ \int_3^4 \frac{dx}{\sqrt{x^2 + 4}} = \ln \left( \frac{4 + 2\sqrt{5}}{3 + \sqrt{13}} \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(3x^(2)+4))

int(dx)/(sqrt(9x^(2)-4))

int_(3)^(5) (dx)/(sqrt(x+4)+sqrt(x-2))=

(i) int (dx)/(x^2+3) (ii) int (dx)/sqrt(4-x^2)

int (dx)/(x sqrt(x^2+4x-4))

int(dx)/(x sqrt(x^(2)+4))

int(dx)/(x sqrt(x^(2)-4))

int(dx)/(sqrt(4x^(2)+3))

int(dx)/(sqrt(4x^(2)+5))