Home
Class 12
MATHS
int0^1 1/(sqrt(x+3)-sqrt(x+1)) dx...

`int_0^1 1/(sqrt(x+3)-sqrt(x+1)) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^1 \frac{1}{\sqrt{x+3} - \sqrt{x+1}} \, dx \), we will follow these steps: ### Step 1: Rationalize the Denominator We start by multiplying the numerator and denominator by the conjugate of the denominator: \[ I = \int_0^1 \frac{1}{\sqrt{x+3} - \sqrt{x+1}} \cdot \frac{\sqrt{x+3} + \sqrt{x+1}}{\sqrt{x+3} + \sqrt{x+1}} \, dx \] This gives us: \[ I = \int_0^1 \frac{\sqrt{x+3} + \sqrt{x+1}}{(\sqrt{x+3})^2 - (\sqrt{x+1})^2} \, dx \] ### Step 2: Simplify the Denominator Now we simplify the denominator: \[ (\sqrt{x+3})^2 - (\sqrt{x+1})^2 = (x+3) - (x+1) = 2 \] Thus, we can rewrite the integral as: \[ I = \int_0^1 \frac{\sqrt{x+3} + \sqrt{x+1}}{2} \, dx \] ### Step 3: Factor Out the Constant We can factor out the constant \( \frac{1}{2} \): \[ I = \frac{1}{2} \int_0^1 (\sqrt{x+3} + \sqrt{x+1}) \, dx \] ### Step 4: Split the Integral Now we can split the integral into two parts: \[ I = \frac{1}{2} \left( \int_0^1 \sqrt{x+3} \, dx + \int_0^1 \sqrt{x+1} \, dx \right) \] ### Step 5: Evaluate Each Integral We will evaluate each integral separately. #### Integral 1: \( \int_0^1 \sqrt{x+3} \, dx \) Let \( u = x + 3 \), then \( du = dx \) and the limits change from \( x=0 \) to \( u=3 \) and from \( x=1 \) to \( u=4 \): \[ \int_0^1 \sqrt{x+3} \, dx = \int_3^4 \sqrt{u} \, du = \left[ \frac{2}{3} u^{3/2} \right]_3^4 = \frac{2}{3} (4^{3/2} - 3^{3/2}) = \frac{2}{3} (8 - 3\sqrt{3}) \] #### Integral 2: \( \int_0^1 \sqrt{x+1} \, dx \) Let \( v = x + 1 \), then \( dv = dx \) and the limits change from \( x=0 \) to \( v=1 \) and from \( x=1 \) to \( v=2 \): \[ \int_0^1 \sqrt{x+1} \, dx = \int_1^2 \sqrt{v} \, dv = \left[ \frac{2}{3} v^{3/2} \right]_1^2 = \frac{2}{3} (2^{3/2} - 1^{3/2}) = \frac{2}{3} (2\sqrt{2} - 1) \] ### Step 6: Combine the Results Now we combine the results of the two integrals: \[ I = \frac{1}{2} \left( \frac{2}{3} (8 - 3\sqrt{3}) + \frac{2}{3} (2\sqrt{2} - 1) \right) \] \[ I = \frac{1}{3} (8 - 3\sqrt{3} + 2\sqrt{2} - 1) = \frac{1}{3} (7 - 3\sqrt{3} + 2\sqrt{2}) \] ### Final Result Thus, the value of the integral is: \[ I = \frac{7 - 3\sqrt{3} + 2\sqrt{2}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_0^1 1/(sqrt(1+x)-sqrtx) dx

int_0^1 (dx)/(sqrt(1+x)-sqrtx)

int(1/sqrt(x)-sqrt(x))dx

int_(0)^(1)(1)/(sqrt(1+x)-sqrt(x))dx

If int_(0)^(1)(1)/(sqrt(x+1)-sqrt(x))dx=(a(sqrt(2)))/(3) , then a =

int_0^1 x/sqrt(1+x)dx

int_0^1 1/sqrt(5x+3) dx=

If int_(0)^(b)(1)/(sqrt(1+x)-sqrt(x))dx=(2)/(3)(2sqrt(2)) , then b =

int(sqrt(x)+1/sqrt(x))dx

int((1)/(sqrt(x))-sqrt(x))dx