Home
Class 12
MATHS
int0^1 (cos^-1 x)^2 dx....

`int_0^1 (cos^-1 x)^2 dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 (\cos^{-1} x)^2 \, dx \), we will follow these steps: ### Step 1: Substitution Let \( \theta = \cos^{-1} x \). Then, we have: \[ x = \cos \theta \] Differentiating both sides gives: \[ dx = -\sin \theta \, d\theta \] ### Step 2: Change the limits of integration When \( x = 0 \): \[ \theta = \cos^{-1}(0) = \frac{\pi}{2} \] When \( x = 1 \): \[ \theta = \cos^{-1}(1) = 0 \] Thus, the limits change from \( x: 0 \to 1 \) to \( \theta: \frac{\pi}{2} \to 0 \). ### Step 3: Rewrite the integral Substituting \( x \) and \( dx \) into the integral, we have: \[ \int_0^1 (\cos^{-1} x)^2 \, dx = \int_{\frac{\pi}{2}}^0 \theta^2 (-\sin \theta) \, d\theta \] This can be rewritten as: \[ \int_0^{\frac{\pi}{2}} \theta^2 \sin \theta \, d\theta \] ### Step 4: Integration by parts Let: - \( u = \theta^2 \) ⇒ \( du = 2\theta \, d\theta \) - \( dv = \sin \theta \, d\theta \) ⇒ \( v = -\cos \theta \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int_0^{\frac{\pi}{2}} \theta^2 \sin \theta \, d\theta = \left[ -\theta^2 \cos \theta \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} 2\theta \cos \theta \, d\theta \] ### Step 5: Evaluate the boundary term Evaluating the boundary term: \[ \left[ -\theta^2 \cos \theta \right]_0^{\frac{\pi}{2}} = -\left(\frac{\pi}{2}\right)^2 \cdot \cos\left(\frac{\pi}{2}\right) + 0 = 0 \] ### Step 6: Second integration by parts Now we need to evaluate: \[ \int_0^{\frac{\pi}{2}} 2\theta \cos \theta \, d\theta \] Let: - \( u = 2\theta \) ⇒ \( du = 2 \, d\theta \) - \( dv = \cos \theta \, d\theta \) ⇒ \( v = \sin \theta \) Using integration by parts again: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int_0^{\frac{\pi}{2}} 2\theta \cos \theta \, d\theta = \left[ 2\theta \sin \theta \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} 2 \sin \theta \, d\theta \] ### Step 7: Evaluate the boundary term again Evaluating the boundary term: \[ \left[ 2\theta \sin \theta \right]_0^{\frac{\pi}{2}} = 2\left(\frac{\pi}{2}\right) \cdot 1 - 0 = \pi \] ### Step 8: Evaluate the remaining integral Now we need to evaluate: \[ \int_0^{\frac{\pi}{2}} 2 \sin \theta \, d\theta = -2 \left[ \cos \theta \right]_0^{\frac{\pi}{2}} = -2(0 - (-1)) = 2 \] ### Step 9: Combine results Putting it all together: \[ \int_0^{\frac{\pi}{2}} 2\theta \cos \theta \, d\theta = \pi - 2 \] Thus: \[ \int_0^{\frac{\pi}{2}} \theta^2 \sin \theta \, d\theta = 0 + (\pi - 2) = \pi - 2 \] ### Final Answer The value of the integral \( \int_0^1 (\cos^{-1} x)^2 \, dx \) is: \[ \boxed{\pi - 2} \]
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_0^1(cos^(-1)x)^2dx

Prove that for ngt1 . int_0^1(cos^-1x)^ndx=n(pi/2)^(n-1)-n(n-1)int_0^1(cos^-1x)^(n-2)dx

Let I=int_0^1 (sinx)/sqrtx dx and J=int_0^1 (cos x)/sqrtx dx . Then which of the following is true?

int_(0)^(1)cos^(-1)x dx=

Evaluate: int_0^pi x/(1+cos^2x)dx

int_0^1 (x+x^2)dx

int_0^1 x^2(1-x)^(3/2) dx=

int_(-a)^(a)(cos^(-1)x-sin^(-1)sqrt(1-x^(2)))dx is (a>0) there int_(0)^(a)cos^(-1)xdx=A) is

(i) int_0^1 x sqrt(2-x) dx (ii) int_0^1 x^2(1-x)^n dx