Home
Class 12
MATHS
(A) For each of the following function f...

(A) For each of the following function f(x), verify that: `int_0^2 f(x) dx=int_0^1 f(x) dx+int_1^2 f(x) dx:` (i) f(x)=x+2 (ii) f(x)=`x^2+2` (iii) f(x)=`e^x` (B) For each of the following pairs of function `f(x)` and `g(x)`, verify that: `int_0^1 [f(x)+g(x)]dx=int_0^1 f(x) dx+int_0^1 g(x) dx:` (i) f(x)=1,g(x) =`x^2` (ii) `f(x)=e^x, g(x)=1`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) FAQ|23 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) SHORT ANSWER QUESTION TYPE|11 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(n) FAQ|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Prove that int_0^t f(x)g(t-x)dx=int_0^t g(x)f(t-x)dx

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

Prove that : int_(0)^(2a) f(x)dx=int_(0)^(a) f(x)dx+int_(0)^(a) f(x)dx+int_(0)^(a) f(2a-x)dx

int _(0) ^(2a) f (x) dx = int _(0) ^(a) f (x) dx + int _(0)^(a) f (2a -x ) dx

Show that int_(0)^(a)f(x)g(x)dx=2int_(0)^(a)f(x)dx if f and g defined as f(x)=f(a-x) and g(x)quad +g(a-x)=4

If f(x)+f(pi-x)=1 and g(x)+g(pi-x)=1 , then : int_(0)^(pi)[f(x)+g(x)]dx=

int{f(x)+-g(x)}dx=int f(x)dx+-int g(x)dx

If int f(x)dx=g(x) then int f^(-1)(x)dx is

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these