Home
Class 12
MATHS
int (sin^2x-cos^2x)/(sin x cos x) dx=...

`int (sin^2x-cos^2x)/(sin x cos x) dx=`_____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\sin^2 x - \cos^2 x}{\sin x \cos x} \, dx, \] we can break it down into two separate integrals. ### Step 1: Rewrite the integral We can express the integral as: \[ I = \int \left( \frac{\sin^2 x}{\sin x \cos x} - \frac{\cos^2 x}{\sin x \cos x} \right) \, dx. \] ### Step 2: Simplify each term This simplifies to: \[ I = \int \left( \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} \right) \, dx. \] ### Step 3: Rewrite in terms of trigonometric functions Recognizing the terms, we can rewrite the integral as: \[ I = \int \tan x \, dx - \int \cot x \, dx. \] ### Step 4: Integrate each term Now we can integrate each term separately: 1. The integral of \(\tan x\) is \(-\ln |\cos x| + C_1\). 2. The integral of \(\cot x\) is \(\ln |\sin x| + C_2\). Thus, we have: \[ I = -\ln |\cos x| - \ln |\sin x| + C. \] ### Step 5: Combine the logarithms Using the properties of logarithms, we can combine the two logarithmic terms: \[ I = -\ln |\cos x \sin x| + C. \] ### Final Answer Therefore, the final result of the integral is: \[ I = -\ln |\cos x \sin x| + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

int(sin2x-cos2x)/(sin2x*cos2x)dx=?

int(cos 2x)/(1+sin x cos x)dx

int(sin x+cosx)/(sin x-cos x)^2dx

int(sin x+cos x)/(sin x-cos x)dx

Find:int(sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx

" (8) "int(sin^(2)x-cos^(2)x)/(sin^(2)x cos^(2)x)dx" का मान ज्ञात कीजिए। "

int (sin ^ (2) x-cos ^ (2) x) / (sin x-cos x) dx

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx