Home
Class 12
MATHS
(i) int tan^2 x dx= (ii) int cot^2 x d...

(i) `int tan^2 x dx`=____
(ii) `int cot^2 x dx =`______

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the integrals step by step. ### Part (i): ∫ tan² x dx 1. **Rewrite tan² x**: We know that \( \tan^2 x = \sec^2 x - 1 \). \[ \int \tan^2 x \, dx = \int (\sec^2 x - 1) \, dx \] 2. **Separate the integrals**: We can separate the integral into two parts: \[ \int \tan^2 x \, dx = \int \sec^2 x \, dx - \int 1 \, dx \] 3. **Integrate each part**: - The integral of \( \sec^2 x \) is \( \tan x \). - The integral of \( 1 \) is \( x \). \[ \int \tan^2 x \, dx = \tan x - x + C \] ### Final answer for Part (i): \[ \int \tan^2 x \, dx = \tan x - x + C \] --- ### Part (ii): ∫ cot² x dx 1. **Rewrite cot² x**: We know that \( \cot^2 x = \csc^2 x - 1 \). \[ \int \cot^2 x \, dx = \int (\csc^2 x - 1) \, dx \] 2. **Separate the integrals**: We can separate the integral into two parts: \[ \int \cot^2 x \, dx = \int \csc^2 x \, dx - \int 1 \, dx \] 3. **Integrate each part**: - The integral of \( \csc^2 x \) is \( -\cot x \). - The integral of \( 1 \) is \( x \). \[ \int \cot^2 x \, dx = -\cot x - x + C \] ### Final answer for Part (ii): \[ \int \cot^2 x \, dx = -\cot x - x + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int tan^2 (2x-3) dx (ii) int sec^2 (7-4x) dx

int(x cot^(2)x)dx

int (2+cot^(2) x) dx

(i) int tan^3 x dx (ii) int tan^4 x dx.

2. int ( 1-cot^2x)dx

(i) int x^2 sin x dx (ii) int x^2 sin 2x dx

Evaluate : (i) int tan^(2)x dx , (ii) intcot^(2)xdx , (iii) intsin^(2)x dx

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx

(i) int tan dx=log |secx|+c (ii) int cot x dx=log |sin x|+c (iii) int tan x dx=log |sin x| +c (iv) int tan x dx =-log cos x +c