Home
Class 12
MATHS
int (2-x) sin x dx=...

`int (2-x) sin x dx`=_____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (2 - x) \sin x \, dx \), we can break it down into two separate integrals. Here’s the step-by-step solution: ### Step 1: Break down the integral We can express the integral as: \[ I = \int (2 - x) \sin x \, dx = \int 2 \sin x \, dx - \int x \sin x \, dx \] ### Step 2: Solve the first integral The first integral is straightforward: \[ \int 2 \sin x \, dx = 2 \int \sin x \, dx = 2 (-\cos x) = -2 \cos x \] ### Step 3: Solve the second integral using integration by parts For the second integral \( \int x \sin x \, dx \), we will use integration by parts. Let: - \( u = x \) (which means \( du = dx \)) - \( dv = \sin x \, dx \) (which means \( v = -\cos x \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int x \sin x \, dx = -x \cos x - \int -\cos x \, dx \] \[ = -x \cos x + \int \cos x \, dx \] \[ = -x \cos x + \sin x \] ### Step 4: Combine the results Now we can combine the results from Step 2 and Step 3: \[ I = -2 \cos x - (-x \cos x + \sin x) \] \[ = -2 \cos x + x \cos x - \sin x \] ### Step 5: Final answer Thus, the indefinite integral is: \[ \int (2 - x) \sin x \, dx = x \cos x - 2 \cos x - \sin x + C \] where \( C \) is the constant of integration.
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int e^(2x) sin x dx

int (1-x^2) sin 2x dx

int x^2 sin x^3 dx

int e^x sin 2x dx

int2^(x)sin x dx

int x^2 sin^-1 x dx

int(x^(2)+sin x)dx

Evaluate int e^(2x) sin 3x dx .

int(cos2x)/(sin x)dx

int e^(2x) sin x cos x dx