Home
Class 12
MATHS
Given inte^x\ (tanx+1)secx\ dx=e^xf(x)+c...

Given `inte^x\ (tanx+1)secx\ dx=e^xf(x)+c` write `f(x)` satisfying the above.

Text Solution

Verified by Experts

The correct Answer is:
sec x
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Given int e^(x)(tan x+1)sec xdx=e^(x)f(x)+c write f(x) satisfying the above.

int e^tanx sec^2x dx

int(tanx)/(secx+tanx)dx=

inte^(-x)(1-tanx)secx dx is equal to

inte^(x)secx(1+tanx)dx=?

int(x+tanx)/(x.sinx.secx)dx=

inte^(x)tanx(1+tanx)dx=

int sec x log(secx+tanx)dx=

int(1)/(a secx+b tanx)dx=