Home
Class 12
MATHS
int2^3 3^x dx=...

`int_2^3 3^x dx=`___

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_2^3 3^x \, dx \), we will follow these steps: ### Step 1: Identify the Integral Formula We know that the integral of \( a^x \) with respect to \( x \) is given by the formula: \[ \int a^x \, dx = \frac{a^x}{\ln a} + C \] where \( a \) is a constant and \( C \) is the constant of integration. ### Step 2: Apply the Formula In our case, \( a = 3 \). Therefore, we can apply the formula: \[ \int 3^x \, dx = \frac{3^x}{\ln 3} + C \] ### Step 3: Evaluate the Definite Integral Now, we need to evaluate the definite integral from 2 to 3: \[ \int_2^3 3^x \, dx = \left[ \frac{3^x}{\ln 3} \right]_2^3 \] This means we will substitute the upper limit (3) and the lower limit (2) into the expression. ### Step 4: Substitute the Upper Limit First, we substitute the upper limit \( x = 3 \): \[ \frac{3^3}{\ln 3} = \frac{27}{\ln 3} \] ### Step 5: Substitute the Lower Limit Next, we substitute the lower limit \( x = 2 \): \[ \frac{3^2}{\ln 3} = \frac{9}{\ln 3} \] ### Step 6: Calculate the Result Now, we subtract the result of the lower limit from the result of the upper limit: \[ \int_2^3 3^x \, dx = \frac{27}{\ln 3} - \frac{9}{\ln 3} = \frac{27 - 9}{\ln 3} = \frac{18}{\ln 3} \] ### Final Answer Thus, the value of the integral \( \int_2^3 3^x \, dx \) is: \[ \frac{18}{\ln 3} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_2^3 7^x dx

int_2^3 x^2dx

int_2^3e^(3x)dx=?

Evaluate int_2^3 e^(-x) dx

int2^(3x).3^(x)dx=

int_2^5e^(3x)dx=?

int 2^(x+3) dx

(i) int_1^3 (3x)/(9x^2-1) dx (ii) int_2^3 x/(x^2+1) dx

Evaluate the following integrals: (i) int_2^3 x^2 dx (ii) int_1^3 x/((x+1)(x+2)) dx

(i) int_0^1 (dx)/sqrt(1-x^2) (ii) int_0^1 (dx)/sqrt(1+x^2) (iii) a int_1^sqrt3 (dx)/(1+x^2) b int_0^1 (dx)/(1+x^2) (iv) int_0^(2//3) (dx)/(4+9x^2) (v) int_0^1 x/(x^2+1)dx (vi) int_2^3 x/(x^2+1) dx