Home
Class 12
MATHS
int0^1 (dx)/sqrt(1+x^2) =...

`int_0^1 (dx)/sqrt(1+x^2) =`____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_0^1 \frac{dx}{\sqrt{1+x^2}}, \] we can follow these steps: ### Step 1: Identify the Integral We need to evaluate the integral \[ I = \int_0^1 \frac{dx}{\sqrt{1+x^2}}. \] ### Step 2: Use the Formula for Integration We can use the formula for the integral \[ \int \frac{dx}{\sqrt{a^2 + x^2}} = \ln |x + \sqrt{a^2 + x^2}| + C. \] In our case, \(a^2 = 1\) (so \(a = 1\)), and we can rewrite our integral as: \[ I = \int \frac{dx}{\sqrt{1^2 + x^2}}. \] ### Step 3: Apply the Limits of Integration Using the formula, we get: \[ I = \ln |x + \sqrt{1 + x^2}| \bigg|_0^1. \] ### Step 4: Evaluate at the Upper Limit Now we evaluate at the upper limit \(x = 1\): \[ I = \ln |1 + \sqrt{1 + 1^2}| = \ln |1 + \sqrt{2}|. \] ### Step 5: Evaluate at the Lower Limit Next, we evaluate at the lower limit \(x = 0\): \[ I = \ln |0 + \sqrt{1 + 0^2}| = \ln |0 + 1| = \ln 1 = 0. \] ### Step 6: Combine the Results Now we combine the results from the upper and lower limits: \[ I = \ln |1 + \sqrt{2}| - \ln |1| = \ln |1 + \sqrt{2}| - 0 = \ln(1 + \sqrt{2}). \] ### Final Answer Thus, the value of the integral is: \[ \int_0^1 \frac{dx}{\sqrt{1+x^2}} = \ln(1 + \sqrt{2}). \] ---
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTION|50 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_0^1 x/sqrt(1+x^2)dx

int_0^1 x/sqrt(1-x^2)dx

int_0^1 (x)/(sqrt(1-x))dx=

int_0^1 x/sqrt(1+x)dx

int_0^1(dx)/(sqrt(3-2x))

int_(0)^(1) (x)/(sqrt(1 + x^(2))) dx

int_0^1 x/(1+sqrt(x))dx

int_0^1 (dx)/(sqrt(1+x)-sqrtx)

Evaluate the following : int_(0)^(1)(dx)/(x+sqrt(1-x^(2))).