Home
Class 12
MATHS
If vec(a)=2hat(i)-hat(j)-2hat(k) and ve...

If `vec(a)=2hat(i)-hat(j)-2hat(k)` and `vec(b)=7hat(i)+2hat(j)-3hat(k)`, then express `vec(b)` in the form `vec(b)=vec(b)_(1)+vec(b)_(2)`, where `vec(b)_(1)` is parallel to `vec(a)` and `vec(b)_(2)` is perpendicular to `vec(a)`.

Text Solution

AI Generated Solution

The correct Answer is:
To express the vector \(\vec{b}\) in the form \(\vec{b} = \vec{b}_{1} + \vec{b}_{2}\), where \(\vec{b}_{1}\) is parallel to \(\vec{a}\) and \(\vec{b}_{2}\) is perpendicular to \(\vec{a}\), we will follow these steps: ### Step 1: Identify the given vectors We have: \[ \vec{a} = 2\hat{i} - \hat{j} - 2\hat{k} \] \[ \vec{b} = 7\hat{i} + 2\hat{j} - 3\hat{k} \] ### Step 2: Express \(\vec{b}_{1}\) in terms of \(\vec{a}\) Since \(\vec{b}_{1}\) is parallel to \(\vec{a}\), we can write: \[ \vec{b}_{1} = \lambda \vec{a} \] for some scalar \(\lambda\). Thus, \[ \vec{b}_{1} = \lambda(2\hat{i} - \hat{j} - 2\hat{k}) = 2\lambda\hat{i} - \lambda\hat{j} - 2\lambda\hat{k} \] ### Step 3: Express \(\vec{b}_{2}\) Since \(\vec{b}_{2} = \vec{b} - \vec{b}_{1}\), we can write: \[ \vec{b}_{2} = \vec{b} - \vec{b}_{1} = (7\hat{i} + 2\hat{j} - 3\hat{k}) - (2\lambda\hat{i} - \lambda\hat{j} - 2\lambda\hat{k}) \] This simplifies to: \[ \vec{b}_{2} = (7 - 2\lambda)\hat{i} + (2 + \lambda)\hat{j} + (-3 + 2\lambda)\hat{k} \] ### Step 4: Apply the condition for perpendicularity Since \(\vec{b}_{2}\) is perpendicular to \(\vec{a}\), we have: \[ \vec{b}_{2} \cdot \vec{a} = 0 \] Calculating the dot product: \[ (7 - 2\lambda)(2) + (2 + \lambda)(-1) + (-3 + 2\lambda)(-2) = 0 \] Expanding this gives: \[ 14 - 4\lambda - 2 - \lambda + 6 - 4\lambda = 0 \] Combining like terms: \[ 18 - 9\lambda = 0 \] Thus, \[ 9\lambda = 18 \implies \lambda = 2 \] ### Step 5: Find \(\vec{b}_{1}\) and \(\vec{b}_{2}\) Substituting \(\lambda = 2\) into \(\vec{b}_{1}\): \[ \vec{b}_{1} = 2(2\hat{i} - \hat{j} - 2\hat{k}) = 4\hat{i} - 2\hat{j} - 4\hat{k} \] Now substituting \(\lambda = 2\) into \(\vec{b}_{2}\): \[ \vec{b}_{2} = (7 - 2(2))\hat{i} + (2 + 2)\hat{j} + (-3 + 2(2))\hat{k} \] This simplifies to: \[ \vec{b}_{2} = (7 - 4)\hat{i} + (2 + 2)\hat{j} + (-3 + 4)\hat{k} = 3\hat{i} + 4\hat{j} + 1\hat{k} \] ### Step 6: Write the final expression for \(\vec{b}\) Thus, we can express \(\vec{b}\) as: \[ \vec{b} = \vec{b}_{1} + \vec{b}_{2} = (4\hat{i} - 2\hat{j} - 4\hat{k}) + (3\hat{i} + 4\hat{j} + 1\hat{k}) \] ### Final Result \[ \vec{b} = (4 + 3)\hat{i} + (-2 + 4)\hat{j} + (-4 + 1)\hat{k} = 7\hat{i} + 2\hat{j} - 3\hat{k} \] This confirms that \(\vec{b} = \vec{b}_{1} + \vec{b}_{2}\).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

If vec(a) = 2hat(i) + hat(j) + 2hat(k), vec(b) = 5hat(i) - 3hat(j) + hat(k) , then projection of vec(a) on vec(b) is

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k) , then show that (vec(a)+vec(b)) is perpendicular to (vec(a)-vec(b)) .