Home
Class 12
MATHS
Let vec(F)=2hat(i)+4hat(j)+3hat(k) at t...

Let `vec(F)=2hat(i)+4hat(j)+3hat(k)` at the point P with position vector `hat(i)-hat(j)+3hat(k)`. Find the moment of `vec(F)` about the line through the origin O in the direction of the vector `vec(a)=hat(i)+2hat(j)+2hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the vector \(\vec{F} = 2\hat{i} + 4\hat{j} + 3\hat{k}\) about the line through the origin in the direction of the vector \(\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}\), we can follow these steps: ### Step 1: Determine the Position Vector The position vector at point \(P\) is given as: \[ \vec{r_P} = \hat{i} - \hat{j} + 3\hat{k} \] ### Step 2: Calculate the Moment about Point \(P\) The moment \(\vec{M}\) about point \(P\) is calculated using the formula: \[ \vec{M} = \vec{r_P} \times \vec{F} \] Where \(\vec{F} = 2\hat{i} + 4\hat{j} + 3\hat{k}\). Set up the cross product: \[ \vec{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & 4 & 3 \end{vmatrix} \] ### Step 3: Calculate the Determinant Calculating the determinant: \[ \vec{M} = \hat{i} \begin{vmatrix} -1 & 3 \\ 4 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 2 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: - For \(\hat{i}\): \[ (-1)(3) - (3)(4) = -3 - 12 = -15 \] - For \(\hat{j}\): \[ (1)(3) - (3)(2) = 3 - 6 = -3 \] - For \(\hat{k}\): \[ (1)(4) - (-1)(2) = 4 + 2 = 6 \] ### Step 4: Combine the Results Thus, the moment vector \(\vec{M}\) is: \[ \vec{M} = -15\hat{i} + 3\hat{j} + 6\hat{k} \] ### Step 5: Find the Unit Vector in the Direction of Line \(\vec{a}\) The unit vector \(\hat{a}\) in the direction of \(\vec{a}\) is given by: \[ \hat{a} = \frac{\vec{a}}{|\vec{a}|} \] Where: \[ |\vec{a}| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \] Thus, \[ \hat{a} = \frac{1}{3}(\hat{i} + 2\hat{j} + 2\hat{k}) \] ### Step 6: Calculate the Moment about the Line The moment about the line is given by: \[ M_L = \frac{\vec{M} \cdot \hat{a}}{|\hat{a}|} \] Since \(|\hat{a}| = 1\), we need to calculate \(\vec{M} \cdot \hat{a}\): \[ \vec{M} \cdot \hat{a} = (-15\hat{i} + 3\hat{j} + 6\hat{k}) \cdot \left(\frac{1}{3}(\hat{i} + 2\hat{j} + 2\hat{k})\right) \] Calculating the dot product: \[ = \frac{1}{3} \left(-15 \cdot 1 + 3 \cdot 2 + 6 \cdot 2\right) = \frac{1}{3} \left(-15 + 6 + 12\right) = \frac{1}{3} \left{3\right} = 1 \] ### Final Answer Thus, the moment of \(\vec{F}\) about the line is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Linear momentum vec(P)=2hat(i)+4hat(j)+5hat(k) and position vector is vec(r)=3hat(i)-hat(j)+2hat(k) , the angular momentum is given by

The torque of a force vec(F)=-2hat(i)+2hat(j)+3hat(k) acting on a point vec(r )=hat(i)-2hat(j)+hat(k) about origin will be

For given vectors,vec a=2hat i-hat j+2hat k and vec b=-hat i+hat j-hat k find the unit vector in the direction of the vector quad vec a+vec b

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .

Find the resultant of vectors vec a=hat i-hat j+2hat k and vec b=hat i+2hat j-4hat k. Find the unit vector in the direction of the resultant vector.

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

Write a unit vector in the direction of the sum of the vectors : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .