Home
Class 12
MATHS
Two unlike force of equal magnitudes hat...

Two unlike force of equal magnitudes `hat(j)+2hat(k)` and `-hat(j)-2hat(k)` are acting at the points whose position vectors are given by `hat(i)+hat(j)+hat(k)` and `hat(i)+2hat(j)+3hat(k)` respectively. Find the moment of the couple formed by these forces.

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the couple formed by the two forces, we can follow these steps: ### Step 1: Identify the Forces and Position Vectors The forces acting on the points are: - **Force F1** at point A: \( \hat{j} + 2\hat{k} \) - **Force F2** at point B: \( -\hat{j} - 2\hat{k} \) The position vectors of the points are: - Point A: \( \vec{A} = \hat{i} + \hat{j} + \hat{k} \) - Point B: \( \vec{B} = \hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Find the Position Vector from A to B To find the vector \( \vec{BA} \): \[ \vec{BA} = \vec{A} - \vec{B} \] Substituting the values: \[ \vec{BA} = (\hat{i} + \hat{j} + \hat{k}) - (\hat{i} + 2\hat{j} + 3\hat{k}) = \hat{i} + \hat{j} + \hat{k} - \hat{i} - 2\hat{j} - 3\hat{k} \] Simplifying this gives: \[ \vec{BA} = 0\hat{i} - \hat{j} - 2\hat{k} = -\hat{j} - 2\hat{k} \] ### Step 3: Calculate the Moment of the Couple The moment \( \vec{M} \) of the couple is given by the cross product of the position vector \( \vec{BA} \) and one of the forces (we can use \( F1 \)): \[ \vec{M} = \vec{BA} \times \vec{F1} \] Substituting the vectors: \[ \vec{M} = (-\hat{j} - 2\hat{k}) \times (\hat{j} + 2\hat{k}) \] ### Step 4: Compute the Cross Product Using the determinant method for the cross product: \[ \vec{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -1 & -2 \\ 0 & 1 & 2 \end{vmatrix} \] Calculating this determinant: \[ \vec{M} = \hat{i} \begin{vmatrix} -1 & -2 \\ 1 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & -2 \\ 0 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & -1 \\ 0 & 1 \end{vmatrix} \] Calculating the 2x2 determinants: 1. For \( \hat{i} \): \[ (-1)(2) - (-2)(1) = -2 + 2 = 0 \] 2. For \( \hat{j} \): \[ 0 - 0 = 0 \] 3. For \( \hat{k} \): \[ 0 - 0 = 0 \] Thus: \[ \vec{M} = 0\hat{i} - 0\hat{j} + 0\hat{k} = \vec{0} \] ### Conclusion The moment of the couple formed by these forces is: \[ \vec{M} = \vec{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos