Home
Class 12
MATHS
Find the moment of the couple formed by ...

Find the moment of the couple formed by the forces `5hat(i)+hat(k)` and `-5hat(i)-hat(k)` acting at the points `(9, -1, 2)` and `(3, -2,1)` respectively.

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the couple formed by the forces \( \mathbf{F_1} = 5\hat{i} + \hat{k} \) and \( \mathbf{F_2} = -5\hat{i} - \hat{k} \) acting at the points \( A(9, -1, 2) \) and \( B(3, -2, 1) \) respectively, we can follow these steps: ### Step 1: Identify the position vectors The position vector of point A is: \[ \mathbf{A} = 9\hat{i} - 1\hat{j} + 2\hat{k} \] The position vector of point B is: \[ \mathbf{B} = 3\hat{i} - 2\hat{j} + 1\hat{k} \] ### Step 2: Calculate the vector \( \mathbf{AB} \) The vector \( \mathbf{AB} \) is given by: \[ \mathbf{AB} = \mathbf{B} - \mathbf{A} = (3 - 9)\hat{i} + (-2 + 1)\hat{j} + (1 - 2)\hat{k} \] Calculating this gives: \[ \mathbf{AB} = -6\hat{i} + 1\hat{j} - 1\hat{k} = -6\hat{i} + \hat{j} - \hat{k} \] ### Step 3: Calculate the moment due to force \( \mathbf{F_1} \) The moment \( \mathbf{M_1} \) due to force \( \mathbf{F_1} \) at point A is given by: \[ \mathbf{M_1} = \mathbf{AB} \times \mathbf{F_1} \] Substituting the values: \[ \mathbf{M_1} = (-6\hat{i} + \hat{j} - \hat{k}) \times (5\hat{i} + \hat{k}) \] ### Step 4: Calculate the cross product Using the determinant method for the cross product: \[ \mathbf{M_1} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -6 & 1 & -1 \\ 5 & 0 & 1 \end{vmatrix} \] Calculating this determinant: \[ \mathbf{M_1} = \hat{i} \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} -6 & -1 \\ 5 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} -6 & 1 \\ 5 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i}(1 \cdot 1 - 0 \cdot -1) - \hat{j}(-6 \cdot 1 - 5 \cdot -1) + \hat{k}(-6 \cdot 0 - 5 \cdot 1) \] \[ = \hat{i}(1) - \hat{j}(-6 + 5) + \hat{k}(0 - 5) \] \[ = \hat{i} + \hat{j} - 5\hat{k} \] ### Step 5: Calculate the moment due to force \( \mathbf{F_2} \) The moment \( \mathbf{M_2} \) due to force \( \mathbf{F_2} \) at point B is given by: \[ \mathbf{M_2} = \mathbf{BA} \times \mathbf{F_2} \] Where \( \mathbf{BA} = \mathbf{A} - \mathbf{B} = (9 - 3)\hat{i} + (-1 + 2)\hat{j} + (2 - 1)\hat{k} = 6\hat{i} + 1\hat{j} + 1\hat{k} \). Calculating \( \mathbf{M_2} \): \[ \mathbf{M_2} = (6\hat{i} + \hat{j} + \hat{k}) \times (-5\hat{i} - \hat{k}) \] Using the determinant method: \[ \mathbf{M_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 1 & 1 \\ -5 & 0 & -1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 6 & 1 \\ -5 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 6 & 1 \\ -5 & 0 \end{vmatrix} \] Calculating each of the 2x2 determinants: \[ = \hat{i}(-1) - \hat{j}(-6 + 5) + \hat{k}(0 - (-5)) \] \[ = -\hat{i} + \hat{j} + 5\hat{k} \] ### Step 6: Find the total moment of the couple The total moment \( \mathbf{M} \) is given by: \[ \mathbf{M} = \mathbf{M_1} + \mathbf{M_2} \] Substituting the values: \[ \mathbf{M} = (\hat{i} + \hat{j} - 5\hat{k}) + (-\hat{i} + \hat{j} + 5\hat{k}) \] \[ = (1 - 1)\hat{i} + (1 + 1)\hat{j} + (-5 + 5)\hat{k} \] \[ = 0\hat{i} + 2\hat{j} + 0\hat{k} = 2\hat{j} \] ### Final Answer The moment of the couple is: \[ \mathbf{M} = 2\hat{j} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the moment of the couple formed by forces 5hat(i) +hat(k) acting at (9,-1,2) and -5hat(i)-hat(k) acting at (3,-2,1)

Two unlike forces of equal magnitudes 3hat(i)+hat(k) and -3hat(i)-hat(k) acting at the points hat(i)+2hat(j)-hat(k) and 2hat(i)-hat(j)+3hat(k) respectively. Find the moment of the coupie formed by the forces.

What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

Find the moment about (1,-1,-1) of the force 3hat(i)+4hat(j)-5hat(k) acting at (1, 0,-2) .

Find the vector moment of the forces : hat(i)+2hat(j)-3hat(k), 2hat(i)+3hat(j)+4hat(k) and -hat(i)-hat(j)+hat(k) acting on a particle at a point P (0, 1, 2) about the point A(1, -2, 0) .

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

Find the volume tetrahedron whose coterminus edges are 7hat(i)+hat(k),2hat(i)+5hat(j)-3hat(k)and 4hat(i)+3hat(j)+hat(k) .

What is the moment about the point hat(i) + 2hat(j) - hat(k) of a force represented by 3 hat(i) + hat(k) acting through the point 2 hat(i) - hat(j) + 3hat(k) ?

Find the moment (torque) about the point hat(i)+2hat(j)+3hat(k) of a force represented by hat(i)+hat(j)+hat(k) acting through the point -2hat(i)+3hat(j)+hat(k) .