Home
Class 12
MATHS
Find the vector moment of the forces : ...

Find the vector moment of the forces :
`hat(i)+2hat(j)-3hat(k), 2hat(i)+3hat(j)+4hat(k)` and `-hat(i)-hat(j)+hat(k)`
acting on a particle at a point P (0, 1, 2) about the point `A(1, -2, 0)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector moment of the forces acting on a particle at point P(0, 1, 2) about the point A(1, -2, 0), we will follow these steps: ### Step 1: Identify the Forces The forces acting on the particle are: 1. \( \mathbf{F_1} = \hat{i} + 2\hat{j} - 3\hat{k} \) 2. \( \mathbf{F_2} = 2\hat{i} + 3\hat{j} + 4\hat{k} \) 3. \( \mathbf{F_3} = -\hat{i} - \hat{j} + \hat{k} \) ### Step 2: Calculate the Resultant Force To find the resultant force \( \mathbf{F_R} \), we sum all the forces: \[ \mathbf{F_R} = \mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} \] Calculating the components: - For \( \hat{i} \): \( 1 + 2 - 1 = 2 \) - For \( \hat{j} \): \( 2 + 3 - 1 = 4 \) - For \( \hat{k} \): \( -3 + 4 + 1 = 2 \) Thus, the resultant force is: \[ \mathbf{F_R} = 2\hat{i} + 4\hat{j} + 2\hat{k} \] ### Step 3: Determine the Position Vectors Next, we need the position vectors of points A and P: - Position vector of A: \( \mathbf{A} = \hat{i} - 2\hat{j} + 0\hat{k} \) - Position vector of P: \( \mathbf{P} = 0\hat{i} + 1\hat{j} + 2\hat{k} \) ### Step 4: Calculate the Position Vector from A to P The position vector \( \mathbf{r} \) from A to P is given by: \[ \mathbf{r} = \mathbf{P} - \mathbf{A} \] Calculating the components: - For \( \hat{i} \): \( 0 - 1 = -1 \) - For \( \hat{j} \): \( 1 - (-2) = 3 \) - For \( \hat{k} \): \( 2 - 0 = 2 \) Thus, the position vector is: \[ \mathbf{r} = -\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 5: Calculate the Moment of the Force The moment \( \mathbf{M} \) of the force about point A is given by the cross product: \[ \mathbf{M} = \mathbf{r} \times \mathbf{F_R} \] Substituting the vectors: \[ \mathbf{M} = (-\hat{i} + 3\hat{j} + 2\hat{k}) \times (2\hat{i} + 4\hat{j} + 2\hat{k}) \] ### Step 6: Compute the Cross Product We can compute the cross product using the determinant: \[ \mathbf{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 3 & 2 \\ 2 & 4 & 2 \end{vmatrix} \] Calculating the determinant: - For \( \hat{i} \): \( (3 \cdot 2 - 2 \cdot 4) = 6 - 8 = -2 \) - For \( \hat{j} \): \( -(-1 \cdot 2 - 2 \cdot 2) = 2 + 4 = 6 \) - For \( \hat{k} \): \( -(-1 \cdot 4 - 3 \cdot 2) = 4 + 6 = 10 \) Thus, the moment vector is: \[ \mathbf{M} = -2\hat{i} + 6\hat{j} - 10\hat{k} \] ### Step 7: Final Result The vector moment of the forces about point A is: \[ \mathbf{M} = -2\hat{i} + 6\hat{j} - 10\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) on 2hat(i)+6hat(j)+3hat(k)

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

If the vectors hat(i)-2hat(j)+hat(k),ahat(i)+5hat(j)-3hat(k)and5hat(i)-9hat(j)+4hat(k) are coplanar, then the value of a is