Home
Class 12
MATHS
The angle between the lines whose direct...

The angle between the lines whose direction-ratios are :
` lt 2, 1 , 2 gt and lt 4, 8, 1 gt ` is :

A

`cos^(-1) ((3)/(2))`

B

`cos^(-1) ((2)/(3))`

C

`cos^(-1) ((10)/(3))`

D

`cos^(-1) ((1)/(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the two lines with given direction ratios, we can use the formula for the cosine of the angle θ between two vectors: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] where \(\mathbf{a}\) and \(\mathbf{b}\) are the direction ratios of the two lines. ### Step-by-Step Solution: 1. **Identify the Direction Ratios**: The direction ratios of the first line \(L_1\) are given as \(\mathbf{a} = \langle 2, 1, 2 \rangle\) and for the second line \(L_2\) as \(\mathbf{b} = \langle 4, 8, 1 \rangle\). 2. **Calculate the Dot Product**: The dot product \(\mathbf{a} \cdot \mathbf{b}\) is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (2)(4) + (1)(8) + (2)(1) = 8 + 8 + 2 = 18 \] 3. **Calculate the Magnitudes of the Vectors**: The magnitude of vector \(\mathbf{a}\) is: \[ |\mathbf{a}| = \sqrt{2^2 + 1^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] The magnitude of vector \(\mathbf{b}\) is: \[ |\mathbf{b}| = \sqrt{4^2 + 8^2 + 1^2} = \sqrt{16 + 64 + 1} = \sqrt{81} = 9 \] 4. **Substitute into the Cosine Formula**: Now substitute the values into the cosine formula: \[ \cos \theta = \frac{18}{3 \times 9} = \frac{18}{27} = \frac{2}{3} \] 5. **Find the Angle θ**: To find the angle θ, we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{2}{3}\right) \] ### Final Answer: The angle between the lines is: \[ \theta = \cos^{-1}\left(\frac{2}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (B. FILL IN THE BLANKS)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise OBJECTIVE TYPE QUESTIONS (C. TRUE/FALSE QUESTIONS)|7 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (F) (LONG ANSWER TYPE QUESTIONS (II) )|13 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the acute angle between the lines whose direction-ratios are : lt 1,1,2 gt and lt -3, -4, 1 gt .

Find the acute angle between the lines whose direction-ratios are : lt 2, 3, 6 gt and lt 1,2,-2, gt .

Find the obtuse angle between two lines whose direction-ratios are : lt 3, - 6 , 2 gt and lt 1 , -2, -2 gt .

The acute angle between the lines whose direction ratios are 3, 2, 6 and -2, 1, 2 is

The acute angle between the lines whose direction ratios are 1, 2, 2 and -3, 6, -2 is

Find the angle between the lines whose direction ratios are: 2,-3,4 and 1,2,1 .

Find the angles between the lines whose direction ratios are 3,2,-6 and 1,2,2.

Find the angle between the pairs of lines with direction-ratios : (i) lt 5, -12, 13 gt , lt -3, 4, 5 gt (ii) lt a,b,c gt , lt b, -c, c - a , a - b gt

The angle between the lines whose direction ratios are 1,1,2,sqrt3-1,-sqrt3-1,4 is

The acute angle between the lines whose direction ratios are 1, 1, 2 and sqrt(3)-1, -sqrt(3)-1,4 is

MODERN PUBLICATION-THREE DIMENSIONAL GEOMETRY -OBJECTIVE TYPE QUESTIONS (A. MULTIPLE CHOICE QUESTIONS)
  1. The relation between direction-cosines l, m and n of a line is :

    Text Solution

    |

  2. The direction cosines of x-axis are (A) 0,0,1 (B) 1,0,0 (C) 0,1,0 (D) ...

    Text Solution

    |

  3. What are the direction cosines of Z-axis?

    Text Solution

    |

  4. If the line vec(r) = (-2 hati + 3 hatj + 4 hatk ) + lambda ( - hatk ha...

    Text Solution

    |

  5. Distance between plane 3x + 4y - 20 = 0 and point (0,0,-7) is :

    Text Solution

    |

  6. If a line makes an angle of pi/4 with each of Y and Z-axes , then the ...

    Text Solution

    |

  7. If a line makes angles alpha,beta,gamma with the positive direction of...

    Text Solution

    |

  8. If a line makes angles (pi)/(2), (3pi)/(4) and (pi)/(4) with x,y,z axi...

    Text Solution

    |

  9. If direction-cosines of two lines are proportional to 4,3,2 and 1, -2,...

    Text Solution

    |

  10. The direction consines of a line equally inclined with the co-ordinate...

    Text Solution

    |

  11. The line (x-1)/2=(y-2)/4=(z-3)/4 meets the plane 2x+3y-z=14 in the poi...

    Text Solution

    |

  12. Direction-ratios of line given by : (x -1)/(3) = (2y + 6)/(10) = (1...

    Text Solution

    |

  13. Find the distance of the plane 3x\ \ 4y+12 z=3 from the origin.

    Text Solution

    |

  14. Find the angle between the pair of lines (x+3)/3=(y-1)/5=(z+3)/4and (x...

    Text Solution

    |

  15. If the lines (x -1)/(-3) = (x - 2)/(2k) = (z - 3)/(2) and (x - 1)/(3k...

    Text Solution

    |

  16. The direction-cosines of te vector vec(a) = hati - hatj - 2 hatk are ...

    Text Solution

    |

  17. The angle between the vector vec(r) = 4 hati + 8 hatj + hatk makes wit...

    Text Solution

    |

  18. The length of perpendicular from the origin to the plane : vec(r). (...

    Text Solution

    |

  19. The angle between the lines whose direction-ratios are : lt 2, 1 , ...

    Text Solution

    |

  20. Distance between the point (0,1,7) and the plane 3x + 4y + 1 = 0 is :

    Text Solution

    |