Home
Class 12
MATHS
If tan^(-1) y = tan^(-1) x + tan^(-1)((2...

If `tan^(-1) y = tan^(-1) x + tan^(-1)((2x)/(1 -x^(2)))", where" |x| lt 1/sqrt3`.
Then, the value of y is

A

`(3x-x^3)/(1-3x^2)`

B

`(3x+x^3)/(1-3x^2)`

C

`(3x-x^3)/(1+3x^2)`

D

`(3x+x^3)/(1+3x^2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise QUESTION FROM KARNATAKA CET & COMED|10 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS (LEVEL - II)|20 Videos
  • INDEFINITE INTEGERALS

    MODERN PUBLICATION|Exercise RCQs Recent Competitive Questions (Questions From Karnataka CET & COMED)|12 Videos
  • LIMIT AND CONTINUITY

    MODERN PUBLICATION|Exercise QUESTIONS FROM KARNATAKA CET & COMED|7 Videos

Similar Questions

Explore conceptually related problems

If y = tan^(-1) ((2x)/(1-x^(2))) then dy/dx =

If tan^(-1)3+tan^(-1)x=tan^(-1)8 , then x=

d/dx [tan (tan^(-1) (x/a) - tan^(-1) ((x-a)/(x+a)))] =

Prove that tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy)) when xylt1

If tan^(-1) x + tan^(-1) y =(pi)/(4) then...

If tan^(-1) 2x + tan^(-1) 3x = (pi)/(4) , then x =

y = tan^(-1)((3x-x^3)/(1-3x^2)), 1/(sqrt3) , x , 1/(sqrt3) .

Prove the following: 2tan^(-1)x=tan^(-1)((2x)/(1-x^(2))),-1ltxlt1