Home
Class 12
PHYSICS
An electron is an excited state of Li^(2...

An electron is an excited state of `Li^(2 + )`ion has angular momentum `3h//2 pi ` . The de Broglie wavelength of the electron in this state is `p pi a_(0) (where a_(0) ` is the bohr radius ) The value of p is

Text Solution

Verified by Experts

The correct Answer is:
2

Angular momentum of electron is given as follows :
`l=(3h)/(2pi)`
We can understand that electron is in quantum state n=3
According to de Broglie.s hypothesis, circumference of the orbital must be integral multiple of wavelength .
`nlambda=2pir_n`
`rArr nlambda=2pi n^2/Z a_0`
`rArr lambda=2pi n^2/Z a_0`
We can substitute n=3 , Z=3 to get the de Broglie wavelength as follows :
`lambda=2pi(3/3)a_0=2pia_0`
Now comparing it with given result `ppia_0` we get p=2 .
Promotional Banner

Topper's Solved these Questions

  • ATOMS

    MODERN PUBLICATION|Exercise COMPETITION FILE (Ncert Exemplar Problems )|13 Videos
  • ATOMS

    MODERN PUBLICATION|Exercise Chapter Practice Test|16 Videos
  • ATOMS

    MODERN PUBLICATION|Exercise COMPETITION FILE (Matrix match )|2 Videos
  • ALTERNATING CURRENT

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|16 Videos
  • CURRENT ELECTRICITY

    MODERN PUBLICATION|Exercise Chapter Practice Test|15 Videos

Similar Questions

Explore conceptually related problems

An electron is an excited state of Li^(2 + ) ion angular mometum 3b//2 pi . The de Broglie wavelength of the electron in this state is p pi s_(0) (where a_(0) is the bohr radius ) The value of p is

If the de Broglie wavelength of the electron in n^(th) Bohr orbit in a hydrogenic atom is equal to 1.5pia_(0)(a_(0) is bohr radius), then the value of n//z is :

In a H-atom an electron is in 2^(nd) excited state and its radius =4.75Å calculate the de-broglie wavelength of the electron

The radius of first Bohr ortbit is x. The de-Broglie wavelength of electron in 3rd orbit is npix where n=?

An electron in the first excited state of if atom obserbed a photon and further excited .The de broglie wavelength of the electron in this state is found to be 13.4Å Find the wavelength of the photon abserbed by the electron in angstroms Also find the longest and the shorted wavelength emitted when this electron de-excited back to the ground state

The de-broglie wavelength of the electron in the second Bohr orbit is (given the radius of the first orbit r_1 = 0.53 Å)

Radius of 2 nd shell of He^(+) is ( where a_(0) is Bohr radius )

de-Broglie wavelength of electron in 2^("nd") excited state of hydrogen atom is: [where r_(0) is the radius of 1^("st") orbit in H-atom]

The velocity of electrons in the 3rd excited state of a hydrogen atom is [ a_(0) is Bohr radius ]: