Home
Class 12
MATHS
Find the domain of the function : f(x)=s...

Find the domain of the function : `f(x)=sin^(-1)((log)_2x)`

Text Solution

Verified by Experts

The correct Answer is:
`[1//2,2]`

`f(x)=sin^(-1)(log_(2)x)`
Since the domain of `sin^(-1)x " is " [-1,1],f(x)=sin^(-1)(log_(2)x)` is defined if
`-1 le log_(2)x le 1`
or ` 2^(-1) le x le 2^(1)`
or `(1)/(2) le x le 2`
or domain`=[(1)/(2),2]`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.7|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

Find the domain of the function : f(x)=sin^(-1)(log_(2)x)

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function f(x)=sin^(-1)(2x-3)

Find the domain of the function: f(x)=(sin^(-1)x)/(x)

Find the domain of the function f(x)=sin^(-1)sqrt(x-1)

Find the domain of the function: f(x)=sin^(-1)(|x-1|-2)

The number of integers in the domain of the function f(x)=sin^(-1)(log_(2)((x^(2))/(2)))

The domain of the function f(x)=sin^(-1)log_(3)(x/3)) is

Find the domain of the function f(x)=log_(e)(x-2)

Find the domain of the function f(x)=log_(e)(x-2)