Home
Class 12
MATHS
Find the domain of the function : f(x)=1...

Find the domain of the function : `f(x)=1/(sqrt((log)_(1/2)(x^2-7x+13)))`

Text Solution

Verified by Experts

The correct Answer is:
`(3,4)`

`f(x)=(1)/(sqrt(log_(1//2)(x^(2)-7x+13)))` exists if
`log_(1//2)(x^(2)-7x+13) gt 0`
or `x^(2)-7x+13 lt 1 " (1) " `
and `x^(2)-7x+13 gt 0 " (2)" `
or `x^(2)-7x+12 lt 0 " and " (x-(7)/(2))^(2)+(3)/(4) gt 0`
or `3 lt x lt 4 " and " x in R`
or ` 3 lt x lt 4`
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.9|13 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.10|6 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE|Exercise Exercise 1.7|5 Videos
  • Quadratic Equations, Inequalities, Modulus and Logarithms

    CENGAGE|Exercise Question Bank|31 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE|Exercise DPP 2.3|11 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt(log_(10)x)) is

Find the domain of the function : f(x)=sin^(-1)(log_(2)x)

Let x in(0,(pi)/(2))* Then find the domain of the function f(x)=(1)/(sqrt((-(log)_(sin x)tan x)))

The domain of the function f(x)=sqrt(log_(x^(2)-1)x) is

Find the domain of the function f(x) = sqrt(log_(1//4) ((5x - x^(2))/(4)))

Find the domain of the function: f(x)=sqrt(((log)_(0.3)|x-2|)/(|x|))

The domain of the function f(x)=sqrt(log((1)/(|sinx|)))

The domain of the function f(x)=sqrt((log_(0.3)(x-1))/(x^(2)-3x-18)) is

Find the domain of the given function f(x)=sqrt(1+log_(e)(1-x)) .