Home
Class 12
MATHS
The area enclosed by the curves y=sinx+c...

The area enclosed by the curves `y=sinx+cosx and y=|cosx−sinx|` over the interval `[0,pi/2]` is (a) `4(sqrt2-1)` (b) `2sqrt2(sqrt2-1)` (c) `2(sqrt2+1)` (d) `2sqrt2(sqrt2+1)`

A

`4(sqrt(2)-1)`

B

`2sqrt(2)(sqrt(2)-1)`

C

`2(sqrt(2)+1)`

D

`2sqrt(2)(sqrt(2)+1)`

Text Solution

Verified by Experts

The correct Answer is:
B

Since `sin x and cos x gt 0" for "x in [0,pi//2],` the graph of y= sin x+cos x always lies above the graph of `y=|cos x - sin x|`
Also `cos x gt sin x" for " x in [0,pi//4] and sin gt cos" for " x in [pi//4,pi//2]`
`rArr" Area "=overset(pi//4)underset(0)int((sin x + cos x)-(cos x - sin x))dx+overset(pi//2)underset(pi//4)int((sin x + cos x)-(sin x - cos x))dx`
`=4-2sqrt(2)`
Promotional Banner

Topper's Solved these Questions

  • AREA

    CENGAGE|Exercise Multiple Correct Answer Type|3 Videos
  • AREA

    CENGAGE|Exercise Single Correct Answer Type|27 Videos
  • AREA

    CENGAGE|Exercise JEE Main Previous Year|10 Videos
  • APPLICATIONS OF DERIVATIVES

    CENGAGE|Exercise Question Bank|29 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos

Similar Questions

Explore conceptually related problems

The area enclosed by the curves y=sin x+cos x and y=|cos x-sin x| over the interval [0,(pi)/(2)] is (a) 4(sqrt(2)-1) (b) 2sqrt(2)(sqrt(2)-1)(c)2(sqrt(2)+1)(d)2sqrt(2)(sqrt(2)+1)

The area enclosed by the curve y=sin x+cos x and y=|cos x-sin x| over the interval [0,(pi)/(2)] is 4(sqrt(2)-2) (b) 2sqrt(2)(sqrt(2)-1)2(sqrt(2)+1)(d)2sqrt(2)(sqrt(2)+1)

The area of the figure bounded by the curves y=cosx and y=sinx and the ordinates x=0 and x=pi/4 is (A) sqrt(2)-1 (B) sqrt(2)+1 (C) 1/sqrt(2)(sqrt(2)-1) (D) 1/sqrt(2)

(sqrt8)^(1/3) = ? (a) 2 (b) 4 (c) sqrt2 (d) 2sqrt2

The area formed by triangular shaped region bounded by the curves y=sinx, y=cosx and x=0 is (A) sqrt(2)-1 (B) 1 (C) sqrt(2) (D) 1+sqrt(2)

The greatest value of the function f(x)=(sin2x)/(sin(x+(pi)/(4))) on the interval (0,(pi)/(2)) is (1)/(sqrt(2))(b)sqrt(2)(c)1(d)-sqrt(2)

The area of the region bounded by the lines x=0, x=pi/2 and f(x)=sinx, g(x)=cosx is (A) 2(sqrt(2)+1) (B) sqrt(3)-1 (C) 2(sqrt(3)-1) (D) 2(sqrt(2)-1)

The area under the curve y=|cosx-sinx|, 0 le x le pi/2 , and above x-axis is: (A) 2sqrt(2)+2 (B) 0 (C) 2sqrt(2)-2 (D) 2sqrt(2)

The radius of a circle,having minimum area, which touches the curve y=4-x^(2) and the lines,y=|x| is: (a) 4(sqrt(2)+1)( b) 2(sqrt(2)+1) (c) 2(sqrt(2)-1)( d) 4(sqrt(2)-1)

Solve sinx +cosx=sqrt2 .