Home
Class 12
MATHS
ax + by^(2) = cos y...

`ax + by^(2) = cos y `

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the equation \(ax + by^2 = \cos y\), we will differentiate both sides with respect to \(x\). ### Step-by-Step Solution: 1. **Differentiate both sides with respect to \(x\)**: \[ \frac{d}{dx}(ax + by^2) = \frac{d}{dx}(\cos y) \] ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

prove that: cos ^ (2) x + cos ^ (2) y-2cos x * cos y * cos (x + y) = sin ^ (2) (x + y)

If = X cos theta-Y without theta, y = X without theta + Y cos thetaunderset and x ^ (2) + 4xy + y ^ (2) = AX ^ (2) + BY ^ (2), 0 <= theta <= (pi) / (2) then

If x+y=z then cos^(2)x+cos^(2)y+cos^(2)z-2cos x cos y cos z is equal to

If x + y = z then cos ^ (2) x + cos ^ (2) y + cos ^ (2) z-2cos x cos y cos z =

find the derivatives of the following functions : (a) y =cos ax, (b) y=5x^(2)-2x

Consider two circes x ^(2) + y ^(2) =a ^(2) - lamda and x ^(2) + y ^(2) - 2 ax cos theta - 2 a y sin theta + lamda = 0. Each circle passes through the centre of the other for