Home
Class 12
MATHS
xy + y^(2) = tan x + y...

`xy + y^(2) = tan x + y `

Text Solution

AI Generated Solution

To find \(\frac{dy}{dx}\) for the equation \(xy + y^2 = \tan x + y\), we will differentiate both sides with respect to \(x\) and solve for \(\frac{dy}{dx}\). ### Step-by-Step Solution: 1. **Differentiate both sides of the equation**: \[ \frac{d}{dx}(xy + y^2) = \frac{d}{dx}(\tan x + y) \] ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

xy = tan (x + y)

If x + y = 10 and xy = 16 , then the values of x^2 - xy + y^2 and x^2 + x y + y^2 are

(sin x + sin y) / (sin x-sin y) = tan ((x + y) / (2)) * cot ((xy) / (2))

(1-tan x) / (1 + tan x) = tan y and xy = (pi) / (6), thenx, y

The product of the rational expressions (x^2 - y^2)/(x^2 + 2xy + y^2) and (xy + y^2)/(x^2 - xy) is:

If xy = 6 and x ^(2) y + xy ^(2) + x + y = 63, then the value of x ^(2) + y ^(2) is

If x^(2) + y^(2) -3xy = 0 and x gt y then find the value of log_(xy)(x-y) .

(sec x sec y + tan x tan y) ^ (2) - (sec x tan y + tan x sec y) ^ (2) = 1 Prove it

tan ^ (- 1) ((1) / (x + y)) + tan ^ (- 1) ((y) / (x ^ (2) + xy + 1)) = cot ^ (- 1) x