Home
Class 12
MATHS
y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxl...

`y=tan^-1[(3x-x^3)/(1-3x^2)],-1/sqrt3ltxlt1/sqrt3`

Text Solution

Verified by Experts

`y = tan ^(-1)((3x-x^(3))/(1-3x^(2)))`
Let `x + tantheta`
`rArr theta= tan^(-1) x`
`rArr y = tan^(-1)((3tan theta- tan^(3)theta)/(1-3 tan^(2)theta))`
`= tan^(-1) (tan3theta) = 3theta = 3 tan^(-1)x `
`rArr (dy)/(dx) = 2 (d)/(dx) tan^(-1)x = (3)/(1+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find quad (dy)/(dx) in the following: y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

If y=tan^(-1)((3x-x^(3))/(1-3x^(2))),(1)/(sqrt(3))

y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -1/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3)) w.r.t tan ^(-1)((x)/(sqrt(1-x^(2))))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x>(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -(1)/(sqrt(3)) (1)/(sqrt(3))(3)*xlt1/sqrt(3)