Home
Class 12
MATHS
y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 ...

`y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1`

Text Solution

AI Generated Solution

To find the derivative of the function \( y = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \) for \( 0 < x < 1 \), we can follow these steps: ### Step 1: Substitute \( x \) with \( \tan(\theta) \) Let \( x = \tan(\theta) \). Then, we can express \( y \) in terms of \( \theta \): \[ y = \cos^{-1}\left(\frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) is equal to

If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

Prove that cos^(-1) ((1 - x^(2n))/(1 + x^(2n))) = 2 tan^(-1) x^(n), 0 lt x lt oo

If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2))) equals

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)