Home
Class 12
MATHS
y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0...

`y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1`

Text Solution

AI Generated Solution

To find the derivative of the function \( y = \sin^{-1}\left(\frac{1 - x^2}{1 + x^2}\right) \) for \( 0 < x < 1 \), we can follow these steps: ### Step 1: Substitute \( x = \tan(\theta) \) Let \( x = \tan(\theta) \). Then, we can express \( 1 - x^2 \) and \( 1 + x^2 \) in terms of \( \theta \): \[ 1 - x^2 = 1 - \tan^2(\theta) = \frac{\cos^2(\theta) - \sin^2(\theta)}{\cos^2(\theta)} = \frac{\cos(2\theta)}{\cos^2(\theta)} ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

Prove that : 2sin^(-1). ((2x )/(1+x^(2))), -1 le x lt 1

Let f (x) be a continous function in [-1,1] such that f (x)= [{:((ln (ax ^(2)+ bx +c))/(x ^(2)),,, -1 le x lt 0),(1 ,,, x =0),((sin (e ^(x ^(2))-1))/(x ^(2)),,, 0 lt x le 1):} Then which of the following is/are corrent

If (sin^(-1)x)^(2)-(cos^(-1)x)^(2)=a , 0 lt x lt 1 , a ne 0 , then the value of 2x^(2)-1 is

Find the simplest form of tan^(-1)(sqrt((1-sin x)/(1+sin x))),0 lt x lt pi