Home
Class 12
MATHS
y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x l...

`y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1`

Text Solution

AI Generated Solution

To solve the problem step by step, we start with the given function: ### Step 1: Define the function Given: \[ y = \cos^{-1}\left(\frac{2x}{1 + x^2}\right) \] where \( -1 < x < 1 \). ### Step 2: Use a trigonometric substitution ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) is equal to

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))) , then "………"lt y lt "………" .