Home
Class 12
MATHS
y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sq...

`y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)`

Text Solution

AI Generated Solution

To solve the problem step by step, we will differentiate the function \( y = \sin^{-1}(2x\sqrt{1 - x^2}) \) for \( -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}} \). ### Step 1: Substitute \( x \) with \( \sin \theta \) Let \( x = \sin \theta \). Then, we can express \( y \) in terms of \( \theta \): \[ y = \sin^{-1}(2\sin \theta \sqrt{1 - \sin^2 \theta}) ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx in the following : y=sin^(-1)(2xsqrt(1-x^(2))),-1/sqrt2ltxlt1/sqrt2 .

Show that (i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

The derivative of sin^(-1)(2xsqrt(1-x^2)) w.r.t. sin^(-1)x,(1)/(sqrt2) lt x lt 1 is :

Prove that sin^(-1). ((x + sqrt(1 - x^(2))/(sqrt2)) = sin^(-1) x + (pi)/(4) , where - (1)/(sqrt2) lt x lt(1)/(sqrt2)

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

Differentiate sin^(-1)(2xsqrt(1-x^2)), -1/(sqrt(2))

The derivative of sin^(-1) (2x sqrt(1-x^(2)))" w.r.t. "sin^(-1)x, (1)/(sqrt(2)) lt x lt 1 , is:

Prove that sin^(-1) (2xsqrt(1-x^2))=2cos^(-1)x,1/sqrt2 le x le 1

y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))

Express in terms of : sin^(-1)(2xsqrt(1-x^(2))) to sin^(-1)x for 1gexgt1/(sqrt(2))