Home
Class 12
MATHS
y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x l...

`y = sec^(-1)((1)/(2x^(2) -1 )), 0 lt x lt (1)/(sqrt(2))`

Text Solution

AI Generated Solution

To solve the problem step by step, we will start with the given function and apply the necessary transformations and differentiation. ### Step 1: Define the function We have the function: \[ y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \] for \( 0 < x < \frac{1}{\sqrt{2}} \). ### Step 2: Substitute \( x \) ...
Promotional Banner

Topper's Solved these Questions

  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.4|10 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.5|18 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Exercies 5.2|10 Videos
  • APPLICATIONS OF INTEGRALS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos

Similar Questions

Explore conceptually related problems

y = cos ^(-1)((2x)/(1 +x^(2))),-1 lt x lt1

y = cos ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sin ^(-1)((1 - x^(2))/(1+ x^(2))) 0 lt x lt 1

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

If y = cos^(-1) ((2x)/(1 + x^(2))), - 1 lt x lt 1 " then " (dy)/(dx) is equal to

If y = sin^(-1) ((1 -x^(2))/(1 +x^(2))),0 lt x lt 1 " then " (dy)/(dx) is equal to

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

If cos^(-1) (x) = alpha, (0 lt x lt 1) " and " sin^(-1) (2x sqrt(1 - x^2)) + sec^(-1)(1/(2x^2 - 1)) = (2pi)/(3) , than tan^(-1) (2x) equals