Home
Class 12
MATHS
Let g(x) be differentiable function on R...

Let g(x) be differentiable function on R such `f(x)=g(x)ln(4x^(3)-x)andg'((1)/(3))=-5` then the value of f' `((1)/(3))` is equal to

A

3

B

9

C

27

D

non existent

Text Solution

Verified by Experts

The correct Answer is:
A

Domain of f(x) does not contain the point `x=(1)/(3)`
`:.f'((1)/(3))` does not exist.
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-B [MULTIPLE CORRECT CHOICE TYPE]|5 Videos
  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-C [INTEGER TYPE]|5 Videos
  • TEST PAPERS

    BANSAL|Exercise CHEMISTRY SECTION-2 PART-C [INTEGER TYPE]|5 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

Let g be the inverse function of a differentiable function f and G (x) =(1)/(g (x)). If f (4) =2 and f '(4) =(1)/(16), then the value of (G'(2))^(2) equals to:

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

Let f and g be differentiable functions on R such that g(1)=3=g'(1) and f'(4)=(1)/(18-pi) .If h(x)=f(3x g(x)+sin(pi x)-5) then h'(1) is equal to

If the function f(x)=4x^(5)+3x^(3)+2x^(2)+e^(x/7) and g(x)=f^(-1)(x) then the value of g'(1) is

If the function f(x)=4x^(5)+3x^(3)+2x^(2)+e^(x/7) and g(x)=f^(-1)(x) then the value of g'(1) is

If f(x)=(4x+x^(4))/(1+4x^(3))andg(x)=In ((1+x)/(1-x)) , then what is the value of f^(@)g((e-1)/(e+1)) equal to?

Let f(x) be a continuous & differentiable function on R satisfying f(-x)=f(x)&f(3+x)=f(3-x)AA x in R . If f'(1)=-5 then f'(7) =