Home
Class 12
MATHS
If S(n)=(3)/(1^(2)+2^(2))+(7)/(1^(2)+2^(...

If `S_(n)=(3)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+. . . . . . .. . . . . .` upto n terms, then value of `Lim_(ntooo) S_(n)` is equal to

A

`(1)/(2)`

B

1

C

5

D

6

Text Solution

Verified by Experts

The correct Answer is:
A

`S_(n)=underset(r=1)overset(n)(sum)((2r+1)/(1^(2)+2^(2)+ . . . . . +r^(2)))=underset(r=1)overset(n)(sum)(6(2r+1))/(r(r+1)(2r+1))=6underset(r=1)overset(n)(sum)((1)/(r)-(1)/(r+1))=(6n)/(n+1)`
`:." "underset(ntooo)LimS_(n)=underset(ntooo)Lim(n(6))/(n(1+(1)/(n)))=6`
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-B [MULTIPLE CORRECT CHOICE TYPE]|5 Videos
  • TEST PAPERS

    BANSAL|Exercise MATHS SECTION-3 PART-C [INTEGER TYPE]|5 Videos
  • TEST PAPERS

    BANSAL|Exercise CHEMISTRY SECTION-2 PART-C [INTEGER TYPE]|5 Videos
  • PROBABILITY

    BANSAL|Exercise All Questions|1 Videos
  • THERMODYNAMICS

    BANSAL|Exercise Match the column|7 Videos

Similar Questions

Explore conceptually related problems

If S_(n) = 1 + 3 + 7 + 13 + 21 + "….." upto n terms, then

The sum of the series (3)/(1^(2))+(5)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+...... upto n terms,is

If S_(n)=3+(1+3+3^(2))/(3!)+(1+3+3^(2)+3^(3))/(4!) ………… upto n -terms Then the value of [lim_(ntooo)S_(n)] is (where [.] represent G.I.F)

S_(n)=(3)/(1^(2))+(3)/(1^(2)+2^(2))+(7)/(1^(2)+2^(2)+3^(2))+... upto n terms,then S_(n)=(6n)/(n+1) b.S_(n)=(6(n+2))/(n+1)cS_(oo)=6d.S_(oo)=1

If (1)/(1^(3))+(1+2)/(1^(3)+2^(3))+(1+2+3)/(1^(3)+2^(3)+3^(3))+......n terms then lim_(n rarr oo)[S_(n)]

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

a_ (n) = (1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ^ (2) (1+ (3 ^ ( 2)) / (n ^ (2))) ^ (3) ......... (1+ (n ^ (2)) / (n ^ (2))) ^ (n) then lim_ (n rarr oo) a_ (n) ^ (- (1) / (n ^ (2))) is equal to

Consider S_(n)=(1)/(3^(2)+1)+(1)/(4^(2)+2)+(1)/(5^(2)+3)+(1)/(6^(2)+4)+, upto n terms then