Home
Class 11
MATHS
Find the derivatives of the following : ...

Find the derivatives of the following :
`f(x)=(x^(3)-3x^(2)+4)(4x^(5)+x^(2)-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( f(x) = (x^3 - 3x^2 + 4)(4x^5 + x^2 - 1) \), we will use the product rule of differentiation. The product rule states that if \( f(x) = u(x) \cdot v(x) \), then the derivative \( f'(x) \) is given by: \[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) \] ### Step 1: Identify \( u \) and \( v \) Let: - \( u = x^3 - 3x^2 + 4 \) - \( v = 4x^5 + x^2 - 1 \) ### Step 2: Find \( u' \) and \( v' \) Now, we need to find the derivatives \( u' \) and \( v' \). **Finding \( u' \):** \[ u' = \frac{d}{dx}(x^3 - 3x^2 + 4) = 3x^2 - 6x + 0 = 3x^2 - 6x \] **Finding \( v' \):** \[ v' = \frac{d}{dx}(4x^5 + x^2 - 1) = 20x^4 + 2x + 0 = 20x^4 + 2x \] ### Step 3: Apply the Product Rule Now, we can apply the product rule: \[ f'(x) = u' \cdot v + u \cdot v' \] Substituting \( u, v, u', \) and \( v' \): \[ f'(x) = (3x^2 - 6x)(4x^5 + x^2 - 1) + (x^3 - 3x^2 + 4)(20x^4 + 2x) \] ### Step 4: Expand the Expression Now we will expand both terms. **Expanding \( (3x^2 - 6x)(4x^5 + x^2 - 1) \):** \[ = 3x^2 \cdot 4x^5 + 3x^2 \cdot x^2 + 3x^2 \cdot (-1) - 6x \cdot 4x^5 - 6x \cdot x^2 - 6x \cdot (-1) \] \[ = 12x^7 + 3x^4 - 3x^2 - 24x^6 - 6x^3 + 6x \] Combining like terms: \[ = 12x^7 - 24x^6 + 3x^4 - 6x^3 + 3x^2 + 6x \] **Expanding \( (x^3 - 3x^2 + 4)(20x^4 + 2x) \):** \[ = x^3 \cdot 20x^4 + x^3 \cdot 2x - 3x^2 \cdot 20x^4 - 3x^2 \cdot 2x + 4 \cdot 20x^4 + 4 \cdot 2x \] \[ = 20x^7 + 2x^4 - 60x^6 - 6x^3 + 80x^4 + 8x \] Combining like terms: \[ = 20x^7 - 60x^6 + (2x^4 + 80x^4) - 6x^3 + 8x \] \[ = 20x^7 - 60x^6 + 82x^4 - 6x^3 + 8x \] ### Step 5: Combine All Terms Now we combine both expanded results: \[ f'(x) = (12x^7 - 24x^6 + 3x^4 - 6x^3 + 3x^2 + 6x) + (20x^7 - 60x^6 + 82x^4 - 6x^3 + 8x) \] Combining like terms: \[ = (12x^7 + 20x^7) + (-24x^6 - 60x^6) + (3x^4 + 82x^4) + (-6x^3 - 6x^3) + (3x^2 + 6x) \] \[ = 32x^7 - 84x^6 + 85x^4 - 12x^3 + 14x \] ### Final Answer Thus, the derivative of the function is: \[ f'(x) = 32x^7 - 84x^6 + 85x^4 - 12x^3 + 14x \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find the derivatives of the following : (i) (x^(3)3x^(2)+4)(4x^(5)+x^(2)-1) (ii) (9x^(2))/(x-3)

Find the derivatives of the following : f(x)=(3x+2)/((x+5)(2x+1)+3)

Find the derivatives of the following : G(x)=(sqrt(2)x^(3)+x^(5))(sqrt(3)x^(2)+1/5x^(5))

Find the derivatives of the following (1-3) functions : f(x)=x^(3)+4x^(2)+3x+2

Find the derivatives of the following (1-3) functions : f(x)=2x-3/4

Find the derivatives of f(x) w.r.t. x in the following : f(x)=root(3)(2x^(4)+x^(2)-x)

Find the derivatives of f(x) w.r.t. x in the following : f(x)=(x^(2)+x+5)^(1//3)(x^(3)+1)^(2//3)

Find the derivative of the following w.r.t.x (i) (7x8)^(4)*(5x-1)^(3)( ii) (2x+1)^(4)*(2x^(2)+7x) (iii) (x+1)*(2x+2)*(2x^(2)+3)

Find the derivative at x = 2 of the function f(x)=4x .

Using the first derivative , find the extreme of the following functions : f(x) =(x^(2)-3x+2)/(x^(2)+2x+1)