Home
Class 11
MATHS
Find underset(xrarr1)"lim"f(x), where ...

Find `underset(xrarr1)"lim"f(x)`, where
`f(x)={{:(x^(2)-1,xle1),(-x^(2)-1,xgt1):}`

Text Solution

Verified by Experts

The correct Answer is:
`lim_(x to 1)f(x)` does not exist
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find lim_(x to 1) f(x) , where f(x)={{:(x^(2)-1,xle1),(-x^(2)-1,xgt1):}

lim_(x rarr1)f(x), where f(x)={x^(2)-1,x 1

Find (lim)_(x rarr1)f(x), where f(x)=[x^(2)-1,x 1

Find lim_(xrarr1) f(x) where f(x)= {[(x^2-1)/(x-1), x ne 1],[1, x=1]:}

Find lim_(x rarr 0) f(x) where f(x) = {(2x+3,xle0),(3(x+1),xgt0):}

Let f(x)={:{(x^(2)-1",",xle1),(-x^(2)-1",",xgt1.):} "Find"lim_(xrarr1)f(x).

Evaluate lim_(x rarr1)(f(x)-f(1))/(x-1), where f(x)=x^(2)-2x

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}