Home
Class 11
MATHS
Evaluate : lim(x to 0)f(x)={{:(abs(x)/x"...

Evaluate : `lim_(x to 0)f(x)={{:(abs(x)/x",",x ne 0), (" 0,", x=0.):}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} f(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] we need to analyze the behavior of the function as \( x \) approaches \( 0 \) from both the left and the right. ### Step 1: Evaluate the Right-Hand Limit (RHL) When \( x \) approaches \( 0 \) from the right (i.e., \( x \to 0^+ \)), we have \( x > 0 \). Therefore, \( |x| = x \). So, \[ f(x) = \frac{|x|}{x} = \frac{x}{x} = 1 \quad \text{for } x > 0. \] Thus, \[ \lim_{x \to 0^+} f(x) = 1. \] ### Step 2: Evaluate the Left-Hand Limit (LHL) When \( x \) approaches \( 0 \) from the left (i.e., \( x \to 0^- \)), we have \( x < 0 \). Therefore, \( |x| = -x \). So, \[ f(x) = \frac{|x|}{x} = \frac{-x}{x} = -1 \quad \text{for } x < 0. \] Thus, \[ \lim_{x \to 0^-} f(x) = -1. \] ### Step 3: Compare the Limits and the Function Value Now we have: - Right-Hand Limit: \( \lim_{x \to 0^+} f(x) = 1 \) - Left-Hand Limit: \( \lim_{x \to 0^-} f(x) = -1 \) - Value of the function at \( x = 0 \): \( f(0) = 0 \) ### Step 4: Conclusion Since the right-hand limit and the left-hand limit are not equal (i.e., \( 1 \neq -1 \)), the overall limit does not exist. Thus, we conclude that: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0)f(x) , where : " "f(x)={{:(x/abs(x)",", x ne 0), (0",", x=0):}

Evaluate lim_(x rarr0)((a^(x)-b^(x))/(x))

Find lim_(x to 0) f(x) , where f(x)={{:( x/abs "x " " ,", x ne 0), ( 0",", x =0) :}

Evaluate "lim_(x rarr0)(x-|x|)/(x)

f(x)={{:(|x|cos'1/x, if x ne 0),(0, if x =0):} at x = 0 .

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

f(x)={{:(|x|cos\ 1/x, if x ne 0),(0, if x =0):} at x = 0 .

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

Let f(x)={:{((|x|)/(x)",",xne0),(0",",x=0.):} Find lim_(xrarr0)f(x).

Find lim_(X to 0) f(x) where f(x) = {{:(x, x!=0),(5,x=0):}}