Home
Class 11
MATHS
Evaluate : lim(x to 0) (sqrt(5)-sqrt(4+c...

Evaluate : `lim_(x to 0) (sqrt(5)-sqrt(4+cosx))/(3sin^(2)x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{5} - \sqrt{4 + \cos x}}{3 \sin^2 x}, \] we start by substituting \( x = 0 \): 1. **Substituting \( x = 0 \)**: \[ \sqrt{5} - \sqrt{4 + \cos(0)} = \sqrt{5} - \sqrt{4 + 1} = \sqrt{5} - \sqrt{5} = 0. \] The denominator: \[ 3 \sin^2(0) = 3 \cdot 0^2 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). 2. **Applying L'Hôpital's Rule**: Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator. - **Numerator**: \[ \frac{d}{dx}(\sqrt{5} - \sqrt{4 + \cos x}) = 0 - \frac{1}{2\sqrt{4 + \cos x}} \cdot (-\sin x) = \frac{\sin x}{2\sqrt{4 + \cos x}}. \] - **Denominator**: \[ \frac{d}{dx}(3 \sin^2 x) = 3 \cdot 2 \sin x \cos x = 6 \sin x \cos x. \] 3. **Re-evaluating the limit**: Now, substituting back into the limit: \[ \lim_{x \to 0} \frac{\frac{\sin x}{2\sqrt{4 + \cos x}}}{6 \sin x \cos x}. \] We can simplify this: \[ = \lim_{x \to 0} \frac{1}{2\sqrt{4 + \cos x} \cdot 6 \cos x} = \lim_{x \to 0} \frac{1}{12 \sqrt{4 + \cos x} \cos x}. \] 4. **Substituting \( x = 0 \) again**: Now substituting \( x = 0 \): \[ \cos(0) = 1 \quad \text{and} \quad \sqrt{4 + \cos(0)} = \sqrt{4 + 1} = \sqrt{5}. \] Therefore, we have: \[ = \frac{1}{12 \cdot \sqrt{5} \cdot 1} = \frac{1}{12\sqrt{5}}. \] Thus, the final answer is: \[ \lim_{x \to 0} \frac{\sqrt{5} - \sqrt{4 + \cos x}}{3 \sin^2 x} = \frac{1}{12\sqrt{5}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x)

Evaluate lim_(x to 0) (sqrt(x + 2) - sqrt(2))/(x)

Evaluate : lim_(x to 0)(e^(x)-1)/sqrt(1-cosx) .

Find the value of lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

Evaluate lim_(x to 0) (sqrt(1+x^(3))-sqrt(1-x^(3)))/(x^(2))

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Evaluate the limit: lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

Evaluate lim_(x to a) (sqrt(4a+3x)-sqrt(x+6a))/(sqrt(2a+5x)-sqrt(3a+4x))

The value of lim_(x rarr0)(sqrt(4+x)-sqrt(4-x))/(sin^(-1)2x)=

Evaluate: lim_(x rarr 0) (sqrt(5+x)-sqrt(5-x))/(sqrt(10+x)-sqrt(10-x)) .