Home
Class 11
MATHS
Evaluate : lim(x to 0)(1-cosxcos2xcos3x)...

Evaluate : `lim_(x to 0)(1-cosxcos2xcos3x)/(sin^(2)2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{1 - \cos x \cos 2x \cos 3x}{\sin^2 2x} \), we can follow these steps: ### Step 1: Simplify the numerator We start with the expression in the limit: \[ 1 - \cos x \cos 2x \cos 3x \] Using the identity \( \cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)) \), we can rewrite \( \cos x \cos 2x \): \[ \cos x \cos 2x = \frac{1}{2} (\cos(3x) + \cos(x)) \] Now, we can express \( \cos x \cos 2x \cos 3x \): \[ \cos x \cos 2x \cos 3x = \frac{1}{2} \cos 3x \cdot \frac{1}{2} (\cos(3x) + \cos(x)) = \frac{1}{4} (\cos^2 3x + \cos x \cos 3x) \] ### Step 2: Expand using Taylor series For small values of \( x \), we can use the Taylor series expansions: \[ \cos x \approx 1 - \frac{x^2}{2} + O(x^4) \] Thus: \[ \cos x \cos 2x \cos 3x \approx (1 - \frac{x^2}{2})(1 - \frac{(2x)^2}{2})(1 - \frac{(3x)^2}{2}) = (1 - \frac{x^2}{2})(1 - 2x^2)(1 - \frac{9x^2}{2}) \] Multiplying these out gives: \[ 1 - \left(\frac{x^2}{2} + 2x^2 + \frac{9x^2}{2}\right) = 1 - 7x^2 + O(x^4) \] Thus: \[ 1 - \cos x \cos 2x \cos 3x \approx 7x^2 \] ### Step 3: Simplify the denominator Now, we simplify the denominator \( \sin^2 2x \): Using the Taylor series for \( \sin x \): \[ \sin 2x \approx 2x \] Thus: \[ \sin^2 2x \approx (2x)^2 = 4x^2 \] ### Step 4: Substitute back into the limit Now substituting back into the limit: \[ \lim_{x \to 0} \frac{1 - \cos x \cos 2x \cos 3x}{\sin^2 2x} \approx \lim_{x \to 0} \frac{7x^2}{4x^2} = \frac{7}{4} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{1 - \cos x \cos 2x \cos 3x}{\sin^2 2x} = \frac{7}{4} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(5sin x-7sinx+3 sin3x)/(x^(2)sinx)

Evaluate lim_(x to 0) ("sin"^(2) ax)/("sin"^(2) bx)

Find the value of ("Lim")_(x->0)(1-cos^5xcos^3 2xcos^3 3x)/(x^2)

The value of lim_(xto0) ((1-cos2x)sin5x)/(x^(2)sin3x) is

lim_(x rarr0)((1-cos2x)sin5x)/(x^(2)sin3x)

Evaluate: lim_(xto0)(sinx-2sin3x+sin5x)/x

Evaluate: lim_(x rarr0)((1)/(x^(2))-(1)/(sin^(2)x))

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))