Home
Class 11
MATHS
lim(x to 0)((e^(3x)-e^(2x))/x)...

`lim_(x to 0)((e^(3x)-e^(2x))/x)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((e^(3x)-e^(2x))/(x))

Evaluate the following limits : lim_(x to 0)(e^(x)-e^(-x))

Evaluate the following limit: (lim)_(x rarr0)(e^(3x)-e^(2x))/(x)

Evaluate the following limits : lim_(x to 0)(x(e^(2+x)-e^(2)))/(1-cosx)

Evaluate the limits,if exist lim_(x rarr0)(e^(2+x)-e^(2))/(x)

Evaluate: (i)lim_(xrarr0)((e^(-x)-1)/(x))(ii)lim_(xrarr0)((e^(x)-e^(-x))/(x))(iii)lim_(xrarr0)((e^(x)+e^(-x)-2)/(x^(2)))

lim_(x rarr2)((e^(x)-e^(2))/(x-2))

Evaluate: "lim_(x rarr0)((e^(x)-e^(-x))/(2))

Evaluate lim_(xto0) (e^(x)-e^(xcosx))/(x+sinx).

Applying the L.Hospital rule , find the limits of the following functions : lim_(xto0) (e^(x)-e^(-x)-2x)/(x-sin x)