Home
Class 11
MATHS
Evaluate : lim(x to 0)(log(1+x))/sinx....

Evaluate : `lim_(x to 0)(log(1+x))/sinx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\log(1+x)}{\sin x} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit: \[ L = \lim_{x \to 0} \frac{\log(1+x)}{\sin x} \] ### Step 2: Use known limits We know from calculus that: \[ \lim_{x \to 0} \frac{\log(1+x)}{x} = 1 \] and \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] ### Step 3: Rewrite the limit using these known limits We can manipulate our limit \( L \) to use these known limits. We can multiply and divide by \( x \): \[ L = \lim_{x \to 0} \frac{\log(1+x)}{\sin x} \cdot \frac{x}{x} = \lim_{x \to 0} \frac{\log(1+x)}{x} \cdot \frac{x}{\sin x} \] ### Step 4: Break it into two separate limits Now we can separate the limit into two parts: \[ L = \left( \lim_{x \to 0} \frac{\log(1+x)}{x} \right) \cdot \left( \lim_{x \to 0} \frac{x}{\sin x} \right) \] ### Step 5: Evaluate each limit From our known limits: 1. \( \lim_{x \to 0} \frac{\log(1+x)}{x} = 1 \) 2. \( \lim_{x \to 0} \frac{x}{\sin x} = 1 \) ### Step 6: Combine the results Now we can combine these results: \[ L = 1 \cdot 1 = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\log(1+x)}{\sin x} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) (sinx+log(1-x))/(x^(2)).

Evaluate lim_(xto 0^(+))log_(sinx)sin2x .

Evaluate: lim_(xto0)(log(1-3x))/(5^(x)-1)

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate lim_(xto0)(log(5+x)-log(5-x))/x

Evaluate lim_(x to 0) ((sinx)/(x))^(((sinx)/(x-sinx))).

Evaluate: lim_(x rarr0)(log cos x)/(x)

Evaluate lim_(xto a)(log{1+(x-a)})/((x-a))

Evaluate lim_(xto0^(+))(sinx)^(x)

lim_(x rarr0)(log(1+x))/(x)=1