Home
Class 11
MATHS
Evaluate : lim(x to 0)(e^(x)-1)/sqrt(1-c...

Evaluate : `lim_(x to 0)(e^(x)-1)/sqrt(1-cosx)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}} \), we can follow these steps: ### Step 1: Identify the limit form As \( x \) approaches 0, both the numerator \( e^x - 1 \) and the denominator \( \sqrt{1 - \cos x} \) approach 0. This gives us the indeterminate form \( \frac{0}{0} \). **Hint:** When you encounter \( \frac{0}{0} \) form, consider applying L'Hôpital's Rule or using known limits. ### Step 2: Use known limits We know the following limits: 1. \( \lim_{x \to 0} \frac{e^x - 1}{x} = 1 \) 2. \( \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \) ### Step 3: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}} = \lim_{x \to 0} \frac{e^x - 1}{x} \cdot \frac{x}{\sqrt{1 - \cos x}} \] ### Step 4: Substitute known limits Now, we can substitute the known limits: - From the first limit, as \( x \to 0 \), \( \frac{e^x - 1}{x} \) approaches 1. - For \( \sqrt{1 - \cos x} \), we can express it using the second limit: \[ \sqrt{1 - \cos x} = \sqrt{x^2 \cdot \frac{1 - \cos x}{x^2}} \approx \sqrt{x^2 \cdot \frac{1}{2}} = \frac{x}{\sqrt{2}} \text{ as } x \to 0 \] ### Step 5: Substitute back into the limit Now, substituting back into our limit: \[ \lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}} = \lim_{x \to 0} \frac{e^x - 1}{x} \cdot \frac{x}{\sqrt{1 - \cos x}} = 1 \cdot \frac{x}{\frac{x}{\sqrt{2}}} = \sqrt{2} \] ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to 0} \frac{e^x - 1}{\sqrt{1 - \cos x}} = \sqrt{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate: lim_(x rarr0)(2^(x)-1)/(sqrt(1+x)-1)

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

Evaluate : lim_(x to 0) (sqrt(5)-sqrt(4+cosx))/(3sin^(2)x) .

lim_ (x rarr0) (e ^ (x) -1) / (sqrt (1-cos x))

Evaluate lim_(xto0)(sqrt(1+x)-1)/(x)

Evaluate the following limits : lim_(x to 0)(x(2^(x)-1))/(1-cosx) .

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate : lim_(x->0 ) ( e^sqrt(x)-1) /x

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)