Home
Class 11
MATHS
Given f(x)=1/sqrt(x), x gt 0, find f^(')...

Given `f(x)=1/sqrt(x), x gt 0`, find `f^(')(x)` by delta method.

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( f'(x) \) of the function \( f(x) = \frac{1}{\sqrt{x}} \) using the delta method, we will follow these steps: ### Step 1: Define the derivative using the limit definition The derivative \( f'(x) \) can be defined as: \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \] ### Step 2: Substitute the function into the limit We know that: \[ f(x) = \frac{1}{\sqrt{x}} \] Now, we need to find \( f(x+h) \): \[ f(x+h) = \frac{1}{\sqrt{x+h}} \] Substituting this into the limit gives: \[ f'(x) = \lim_{h \to 0} \frac{\frac{1}{\sqrt{x+h}} - \frac{1}{\sqrt{x}}}{h} \] ### Step 3: Simplify the expression To simplify the expression, we need a common denominator: \[ f'(x) = \lim_{h \to 0} \frac{\sqrt{x} - \sqrt{x+h}}{\sqrt{x}\sqrt{x+h} \cdot h} \] ### Step 4: Rationalize the numerator To eliminate the square roots in the numerator, we multiply the numerator and the denominator by the conjugate of the numerator: \[ f'(x) = \lim_{h \to 0} \frac{(\sqrt{x} - \sqrt{x+h})(\sqrt{x} + \sqrt{x+h})}{h \cdot \sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})} \] This simplifies to: \[ f'(x) = \lim_{h \to 0} \frac{x - (x+h)}{h \cdot \sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})} \] \[ = \lim_{h \to 0} \frac{-h}{h \cdot \sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})} \] ### Step 5: Cancel \( h \) in the numerator and denominator We can cancel \( h \) from the numerator and denominator: \[ f'(x) = \lim_{h \to 0} \frac{-1}{\sqrt{x}\sqrt{x+h}(\sqrt{x} + \sqrt{x+h})} \] ### Step 6: Evaluate the limit as \( h \to 0 \) As \( h \) approaches 0, \( \sqrt{x+h} \) approaches \( \sqrt{x} \): \[ f'(x) = \frac{-1}{\sqrt{x}\sqrt{x}(\sqrt{x} + \sqrt{x})} = \frac{-1}{x \cdot 2\sqrt{x}} = \frac{-1}{2x\sqrt{x}} \] ### Final Result Thus, the derivative \( f'(x) \) is: \[ f'(x) = -\frac{1}{2x\sqrt{x}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (a)|57 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise ILLUSTRATIVE EXAMPLES|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Given f(x)=2x^(3) , find f^(')(x) by delta method.

If f(x)=a^(x), a gt 0 , then f is

Given f(x)=ax^(2) , where 'a' is a constant, find f^(')(x) by the delta method. Hence find f^(')(2) .

If f'(x)=xe^(x) and f(0)=1, find f(x)

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .

Given that f(x) gt g(x) for all x in R and f(0) =g(0) then

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) and f(1) gt 0 then lim_(x to 1) f(x) is equal to

Use the delta method to find the derivative of f(x)=x^(4) . Hence find f^(')(-1/2)" and "f^(')(0) .