Home
Class 11
MATHS
Find the value of the limit given below ...

Find the value of the limit given below
`lim_(n to 1/2)(4n^(2)-1)/(2n-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{n \to \frac{1}{2}} \frac{4n^2 - 1}{2n - 1}, \] we will follow these steps: ### Step 1: Substitute the limit value First, we will substitute \( n = \frac{1}{2} \) into the expression to check if we get an indeterminate form. \[ 4\left(\frac{1}{2}\right)^2 - 1 = 4 \cdot \frac{1}{4} - 1 = 1 - 1 = 0, \] and \[ 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0. \] Since both the numerator and denominator approach 0, we have the indeterminate form \( \frac{0}{0} \). ### Step 2: Factor the numerator Next, we will factor the numerator \( 4n^2 - 1 \). We can recognize this as a difference of squares: \[ 4n^2 - 1 = (2n)^2 - 1^2 = (2n - 1)(2n + 1). \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the factored form of the numerator: \[ \lim_{n \to \frac{1}{2}} \frac{(2n - 1)(2n + 1)}{2n - 1}. \] ### Step 4: Cancel common factors Since \( 2n - 1 \) is common in both the numerator and the denominator, we can cancel it (as long as \( n \neq \frac{1}{2} \)): \[ \lim_{n \to \frac{1}{2}} (2n + 1). \] ### Step 5: Substitute again Now we substitute \( n = \frac{1}{2} \) into the simplified expression: \[ 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2. \] ### Conclusion Thus, the value of the limit is \[ \boxed{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(n to 2)(n^(3)-8)/(n^(2)-4)

The value of the limit prod_(n=2)^(oo)(1-(1)/(n^(2))) is

Find the value of lim_(n rarr oo)(1)/(n)+(1)/(n+1)+(1)/(n+2)+...+(1)/(4n)

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is

The value of lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n+1)-(n)/(1-2n).(n)/(n^(2)+1)] is

The value of lim_(nrarroo) ((sqrtn^(2)+n-1)/(n))^(2sqrt(n^(2)+n-1)) is

Evaluate(with the help of definite integral): lim_(n rarr oo){(1+(1)/(n))(1+(2)/(n))dots(1+(n)/(n))}^((1)/(n))

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. Evaluate the following limits : lim(n to 2)(n^(3)-8)/(n^(2)-4)

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 2)(x^(3)-2x^(2))/(x^(2)-5x+...

    Text Solution

    |

  3. Find the value of the limit given below lim(n to 1/2)(4n^(2)-1)/(2n-1...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 5)(x^(2)-9x+20)/(x^(2)-6x+5...

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 1)[(x-2)/(x^(2)-x)-1/(x^(3)...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to -1)(x^(3)+1)/(x+1).

    Text Solution

    |

  7. If (lim)(x->-a)(x^9+a^9)/(x+a)9,\ find the real value of adot

    Text Solution

    |

  8. Evaluate the left-hand and right-hand limits of the following function...

    Text Solution

    |

  9. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  10. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  11. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 1)(x^(15)-1)/(x^(10)-1)

    Text Solution

    |

  13. Evaluate the following limits : lim(x to 0)((x+1)^(5)-1)/x

    Text Solution

    |

  14. Prove that underset(xrarr0)"lim"((1+x)^(n) - 1)/(x) = n.

    Text Solution

    |

  15. If ("lim")(xvec2)(x^n-2^n)/(x-2)=80a m dm in N ,t h e nfin dt h ev a ...

    Text Solution

    |

  16. lim(x->3) {x^3-7x^2+15x-9}/{x^4-5x^3+27x-27} is equal to:

    Text Solution

    |

  17. Evaluate: (lim)(x->sqrt(2))(x^9-3x^8+x^6-9x^4-4x^2-16 x+84)/(x^5-3x^4-...

    Text Solution

    |

  18. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-sqrt(1-x))/x

    Text Solution

    |

  19. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  20. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |