Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 1)[(x-2)/(x^(2)-x)-1/(x^(3)-3x^(2)+2x)]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 1} \left[\frac{x-2}{x^2 - x} - \frac{1}{x^3 - 3x^2 + 2x}\right], \] we will follow these steps: ### Step 1: Substitute \(x = 1\) First, we substitute \(x = 1\) into the expression to check the form of the limit. \[ \frac{1-2}{1^2 - 1} - \frac{1}{1^3 - 3 \cdot 1^2 + 2 \cdot 1} = \frac{-1}{0} - \frac{1}{0}. \] Both terms approach \(-\infty\), indicating an indeterminate form. **Hint:** Always check the form of the limit by substituting the value into the expression. ### Step 2: Simplify the expression Next, we simplify the expression. The first term can be rewritten as: \[ \frac{x-2}{x^2 - x} = \frac{x-2}{x(x-1)}. \] The second term can be factored: \[ x^3 - 3x^2 + 2x = x(x^2 - 3x + 2) = x(x-1)(x-2). \] Thus, the expression becomes: \[ \frac{x-2}{x(x-1)} - \frac{1}{x(x-1)(x-2)}. \] **Hint:** Factor polynomials to simplify expressions before taking limits. ### Step 3: Combine the fractions Now we combine the two fractions: \[ \frac{(x-2)(x-2) - 1}{x(x-1)(x-2)} = \frac{(x-2)^2 - 1}{x(x-1)(x-2)}. \] ### Step 4: Expand the numerator Next, we expand the numerator: \[ (x-2)^2 - 1 = x^2 - 4x + 4 - 1 = x^2 - 4x + 3. \] So now we have: \[ \frac{x^2 - 4x + 3}{x(x-1)(x-2)}. \] ### Step 5: Factor the numerator The numerator can be factored as: \[ x^2 - 4x + 3 = (x-3)(x-1). \] Thus, the limit expression simplifies to: \[ \frac{(x-3)(x-1)}{x(x-1)(x-2)}. \] ### Step 6: Cancel common factors We can cancel the \((x-1)\) terms: \[ \frac{x-3}{x(x-2)}. \] ### Step 7: Take the limit as \(x \to 1\) Now we substitute \(x = 1\): \[ \lim_{x \to 1} \frac{x-3}{x(x-2)} = \frac{1-3}{1(1-2)} = \frac{-2}{1 \cdot -1} = 2. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to -2)(1/x+1/2)/(x+2)

lim_(xrarr1) [(x-2)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+2x)]

lim_(x rarr1)[(x-1)/(x^(2)-x)-(1)/(x^(3)-3x^(2)+x)]

Evaluate the following limits lim_(x to 1)(1/(x-1)-(3(x-2))/(x^(3)-3x^(2)+2)) .

Evaluate the following limits : lim_(x to 2)(x^(3)-2x^(2))/(x^(2)-5x+6)

Evaluate the following limits : lim_(x rarr 1) [1/(x-1)-2/(x^2-1)]

Evaluate the following limits in lim_(x to -2)(1/x+1/2)/(x+2) .

Evaluate the following limits : lim_(x rarr 1/3) (9x^2-1)/(3x-1)

Evaluate the following limits : lim_(x to 2)(3^(x)+3^(3-x)-12)/(3^(3-x)-3^(x/2)) .

Evaluate the following limits : lim_(x to 0)[1/x-(log(1+x))/x^(2)]

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. Find the value of the limit given below lim(n to 1/2)(4n^(2)-1)/(2n-1...

    Text Solution

    |

  2. Evaluate the following limits : lim(x to 5)(x^(2)-9x+20)/(x^(2)-6x+5...

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 1)[(x-2)/(x^(2)-x)-1/(x^(3)...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to -1)(x^(3)+1)/(x+1).

    Text Solution

    |

  5. If (lim)(x->-a)(x^9+a^9)/(x+a)9,\ find the real value of adot

    Text Solution

    |

  6. Evaluate the left-hand and right-hand limits of the following function...

    Text Solution

    |

  7. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  8. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  9. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  10. Evaluate the following limits : lim(x to 1)(x^(15)-1)/(x^(10)-1)

    Text Solution

    |

  11. Evaluate the following limits : lim(x to 0)((x+1)^(5)-1)/x

    Text Solution

    |

  12. Prove that underset(xrarr0)"lim"((1+x)^(n) - 1)/(x) = n.

    Text Solution

    |

  13. If ("lim")(xvec2)(x^n-2^n)/(x-2)=80a m dm in N ,t h e nfin dt h ev a ...

    Text Solution

    |

  14. lim(x->3) {x^3-7x^2+15x-9}/{x^4-5x^3+27x-27} is equal to:

    Text Solution

    |

  15. Evaluate: (lim)(x->sqrt(2))(x^9-3x^8+x^6-9x^4-4x^2-16 x+84)/(x^5-3x^4-...

    Text Solution

    |

  16. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-sqrt(1-x))/x

    Text Solution

    |

  17. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  18. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  19. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  20. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |