Home
Class 11
MATHS
Find 'k' so that : lim(x to 2) f(x) ex...

Find 'k' so that :
`lim_(x to 2) f(x)` exists, where :
`f(x)={{:(2x+3",", "if "x le 2), (x+k",", "if "x gt 2):}`

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( k \) such that the limit \( \lim_{x \to 2} f(x) \) exists, we need to ensure that the left-hand limit and the right-hand limit at \( x = 2 \) are equal. Given the function: \[ f(x) = \begin{cases} 2x + 3 & \text{if } x \leq 2 \\ x + k & \text{if } x > 2 \end{cases} \] ### Step 1: Calculate the left-hand limit as \( x \) approaches 2. For \( x \leq 2 \): \[ f(x) = 2x + 3 \] Thus, the left-hand limit is: \[ \lim_{x \to 2^-} f(x) = 2(2) + 3 = 4 + 3 = 7 \] ### Step 2: Calculate the right-hand limit as \( x \) approaches 2. For \( x > 2 \): \[ f(x) = x + k \] Thus, the right-hand limit is: \[ \lim_{x \to 2^+} f(x) = 2 + k \] ### Step 3: Set the left-hand limit equal to the right-hand limit. For the limit to exist at \( x = 2 \), we need: \[ \lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) \] This gives us the equation: \[ 7 = 2 + k \] ### Step 4: Solve for \( k \). Rearranging the equation: \[ k = 7 - 2 = 5 \] ### Conclusion: The value of \( k \) is \( 5 \).
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+3k",", "if "x gt 2):}

Find 'k' so that : lim_(x to 2) f(x) exists, where : f(x)={{:(2x+3",", "if "x le 2), (x+2k",", "if "x gt 2):}

f(x){{:(x^(3) - 3"," if x le 2 ),(x^(2) + 1"," if x gt 2 ):}

Find k so that (lim)_(x rarr2)f(x) may exist,where f(x)={2x+3,x 2

f(x) = {{:(kx^(2)"," if x le 2),(3", " if x gt 2):} at x = 2

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

f(x)={{:(3x-8, if x le 5),(2k, if x gt 5) :} at x = 5

Calculate lim_(x to 2) , where f(x) = {{:(3 if ,x le 2),(4 if, x gt 2):}

Find the value of 'a' such that lim_(x rarr 2) f(x) exists, where f(x) = {(ax+5, x lt 2),(x-1, x ge 2):}

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. If (lim)(x->-a)(x^9+a^9)/(x+a)9,\ find the real value of adot

    Text Solution

    |

  2. Evaluate the left-hand and right-hand limits of the following function...

    Text Solution

    |

  3. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  4. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  5. Find 'k' so that : lim(x to 2) f(x) exists, where : f(x)={{:(2x+3"...

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 1)(x^(15)-1)/(x^(10)-1)

    Text Solution

    |

  7. Evaluate the following limits : lim(x to 0)((x+1)^(5)-1)/x

    Text Solution

    |

  8. Prove that underset(xrarr0)"lim"((1+x)^(n) - 1)/(x) = n.

    Text Solution

    |

  9. If ("lim")(xvec2)(x^n-2^n)/(x-2)=80a m dm in N ,t h e nfin dt h ev a ...

    Text Solution

    |

  10. lim(x->3) {x^3-7x^2+15x-9}/{x^4-5x^3+27x-27} is equal to:

    Text Solution

    |

  11. Evaluate: (lim)(x->sqrt(2))(x^9-3x^8+x^6-9x^4-4x^2-16 x+84)/(x^5-3x^4-...

    Text Solution

    |

  12. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-sqrt(1-x))/x

    Text Solution

    |

  13. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  14. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  15. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  16. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |

  17. Evaluate the following limits : lim(x to 2)(2-x)/(sqrt(2+x)-2).

    Text Solution

    |

  18. Evaluate the following limits : lim(x to 0)(sqrt(x+2)-sqrt(2))/x

    Text Solution

    |

  19. Evaluate the following limits : lim(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(...

    Text Solution

    |

  20. Evaluate the following limits : lim(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a...

    Text Solution

    |