Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(sqrt(1+x)-sqrt(1-x))/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}, \] we can follow these steps: ### Step 1: Rationalize the Numerator We will multiply the numerator and denominator by the conjugate of the numerator, which is \(\sqrt{1+x} + \sqrt{1-x}\): \[ \lim_{x \to 0} \frac{(\sqrt{1+x} - \sqrt{1-x})(\sqrt{1+x} + \sqrt{1-x})}{x(\sqrt{1+x} + \sqrt{1-x})}. \] ### Step 2: Apply the Difference of Squares Using the difference of squares formula \(a^2 - b^2 = (a-b)(a+b)\), we can simplify the numerator: \[ \sqrt{1+x}^2 - \sqrt{1-x}^2 = (1+x) - (1-x) = 1 + x - 1 + x = 2x. \] So now we have: \[ \lim_{x \to 0} \frac{2x}{x(\sqrt{1+x} + \sqrt{1-x})}. \] ### Step 3: Simplify the Expression We can cancel \(x\) in the numerator and denominator (as long as \(x \neq 0\)): \[ \lim_{x \to 0} \frac{2}{\sqrt{1+x} + \sqrt{1-x}}. \] ### Step 4: Substitute \(x = 0\) Now we can substitute \(x = 0\): \[ \frac{2}{\sqrt{1+0} + \sqrt{1-0}} = \frac{2}{\sqrt{1} + \sqrt{1}} = \frac{2}{1 + 1} = \frac{2}{2} = 1. \] ### Final Answer Thus, the value of the limit is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(x)

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/x

Evaluate the following limits : lim_(x to 0)(sqrt(x+2)-sqrt(2))/x

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x)

Evaluate the following limits : lim_(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+3x)-sqrt(1-3x))/(x^(2)-1)

Evaluate the following limits: lim_(xrarr0)((sqrt(1+2x)-sqrt(1-2x)))/(sinx)

Evaluate the following limit: (lim)_(x rarr0)(x)/(sqrt(1+x)-sqrt(1-x))

Evaluate the following limits: lim_(xrarr0)((sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x)))

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/(log(1+x)) .

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. lim(x->3) {x^3-7x^2+15x-9}/{x^4-5x^3+27x-27} is equal to:

    Text Solution

    |

  2. Evaluate: (lim)(x->sqrt(2))(x^9-3x^8+x^6-9x^4-4x^2-16 x+84)/(x^5-3x^4-...

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-sqrt(1-x))/x

    Text Solution

    |

  4. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  5. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  7. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 2)(2-x)/(sqrt(2+x)-2).

    Text Solution

    |

  9. Evaluate the following limits : lim(x to 0)(sqrt(x+2)-sqrt(2))/x

    Text Solution

    |

  10. Evaluate the following limits : lim(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(...

    Text Solution

    |

  11. Evaluate the following limits : lim(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a...

    Text Solution

    |

  12. Evaluate the following limits : lim(h to 0)1/h[1/(x+h)-1/x]

    Text Solution

    |

  13. lim(x->2)[1/(x-2)-(2(2x-3))/(x^3-3x^2+2x)]

    Text Solution

    |

  14. Find all possible values of 'a', if : lim(x to a)(x^(9)-a^(9))/(x-a)...

    Text Solution

    |

  15. If (lim)(x->a)(x^3-a^3)/(x-a)=(lim)(x->1)(x^4-1)/(x-1) , find all poss...

    Text Solution

    |

  16. underset(z rarr1)"lim"(2^(1//3)-1)/(z^(1//6)-1)

    Text Solution

    |

  17. Prove that : lim(x to 0)abs(x)/x does not exist

    Text Solution

    |

  18. Prove that : lim(x to 0)x/abs(x) does not exist

    Text Solution

    |

  19. Prove that : lim(x to 0^(+))x/abs(x)=1

    Text Solution

    |

  20. Prove that : lim(x to 0^(-))x/abs(x)=-1.

    Text Solution

    |