Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1 + 3x} - \sqrt{1 - 3x}}{x}, \] we first check the form of the limit by substituting \(x = 0\): \[ \frac{\sqrt{1 + 3(0)} - \sqrt{1 - 3(0)}}{0} = \frac{\sqrt{1} - \sqrt{1}}{0} = \frac{0}{0}. \] Since we have an indeterminate form \(0/0\), we can apply L'Hôpital's Rule, which states that if \(\lim_{x \to a} \frac{f(x)}{g(x)}\) results in \(0/0\) or \(\infty/\infty\), then: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}, \] provided the limit on the right exists. ### Step 1: Differentiate the numerator and denominator Let \(f(x) = \sqrt{1 + 3x} - \sqrt{1 - 3x}\) and \(g(x) = x\). Now we find the derivatives \(f'(x)\) and \(g'(x)\): 1. **Differentiate \(f(x)\)**: - Using the chain rule, the derivative of \(\sqrt{u}\) is \(\frac{1}{2\sqrt{u}} \cdot \frac{du}{dx}\). - For \(\sqrt{1 + 3x}\): \[ f_1'(x) = \frac{1}{2\sqrt{1 + 3x}} \cdot 3 = \frac{3}{2\sqrt{1 + 3x}}. \] - For \(\sqrt{1 - 3x}\): \[ f_2'(x) = \frac{1}{2\sqrt{1 - 3x}} \cdot (-3) = -\frac{3}{2\sqrt{1 - 3x}}. \] - Therefore, \[ f'(x) = \frac{3}{2\sqrt{1 + 3x}} + \frac{3}{2\sqrt{1 - 3x}}. \] 2. **Differentiate \(g(x)\)**: \[ g'(x) = 1. \] ### Step 2: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \left( \frac{3}{2\sqrt{1 + 3x}} + \frac{3}{2\sqrt{1 - 3x}} \right). \] ### Step 3: Evaluate the limit Substituting \(x = 0\): \[ = \frac{3}{2\sqrt{1 + 3(0)}} + \frac{3}{2\sqrt{1 - 3(0)}} = \frac{3}{2\sqrt{1}} + \frac{3}{2\sqrt{1}} = \frac{3}{2} + \frac{3}{2} = 3. \] ### Final Answer Thus, the limit is \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-sqrt(1-x))/x

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/x

Evaluate the following limits : lim_(x to 0)(sqrt(x+2)-sqrt(2))/x

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+3x)-sqrt(1-3x))/(x^(2)-1)

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(2x)

Evaluate the following limits : lim_(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

Evaluate the following limit: (lim)_(x rarr0)(x)/(sqrt(1+x)-sqrt(1-x))

Evaluate the following limits: lim_(xrarr0)((sqrt(1+2x)-sqrt(1-2x)))/(sinx)

Evaluate the following limits: lim_(x to0)(sqrt2-sqrt(1+cosx))/(2x+sin3x)

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/(log(1+x)) .

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(2-x)/(sqrt(2+x)-2).

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(sqrt(x+2)-sqrt(2))/x

    Text Solution

    |

  7. Evaluate the following limits : lim(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(...

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a...

    Text Solution

    |

  9. Evaluate the following limits : lim(h to 0)1/h[1/(x+h)-1/x]

    Text Solution

    |

  10. lim(x->2)[1/(x-2)-(2(2x-3))/(x^3-3x^2+2x)]

    Text Solution

    |

  11. Find all possible values of 'a', if : lim(x to a)(x^(9)-a^(9))/(x-a)...

    Text Solution

    |

  12. If (lim)(x->a)(x^3-a^3)/(x-a)=(lim)(x->1)(x^4-1)/(x-1) , find all poss...

    Text Solution

    |

  13. underset(z rarr1)"lim"(2^(1//3)-1)/(z^(1//6)-1)

    Text Solution

    |

  14. Prove that : lim(x to 0)abs(x)/x does not exist

    Text Solution

    |

  15. Prove that : lim(x to 0)x/abs(x) does not exist

    Text Solution

    |

  16. Prove that : lim(x to 0^(+))x/abs(x)=1

    Text Solution

    |

  17. Prove that : lim(x to 0^(-))x/abs(x)=-1.

    Text Solution

    |

  18. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |

  19. Find lim(x to 0)f(x), where f(x)=abs(x)-5.

    Text Solution

    |

  20. Evaluate lim(x to 0)f(x), where : " "f(x)={{:(x/abs(x)",", x ne 0)...

    Text Solution

    |