Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(sqrt(1+x)-1)/x`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x}, \] we first observe that directly substituting \( x = 0 \) gives us the indeterminate form \( \frac{0}{0} \). Therefore, we can apply L'Hôpital's Rule, which is useful for resolving limits of the form \( \frac{0}{0} \). ### Step 1: Differentiate the numerator and denominator According to L'Hôpital's Rule, we differentiate the numerator and the denominator separately: - The numerator is \( \sqrt{1+x} - 1 \). The derivative of \( \sqrt{1+x} \) is given by: \[ \frac{d}{dx}(\sqrt{1+x}) = \frac{1}{2\sqrt{1+x}}. \] Thus, the derivative of the numerator is: \[ \frac{1}{2\sqrt{1+x}}. \] - The denominator is \( x \), and its derivative is simply: \[ \frac{d}{dx}(x) = 1. \] ### Step 2: Apply L'Hôpital's Rule Now we apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\sqrt{1+x} - 1}{x} = \lim_{x \to 0} \frac{\frac{1}{2\sqrt{1+x}}}{1} = \lim_{x \to 0} \frac{1}{2\sqrt{1+x}}. \] ### Step 3: Evaluate the limit Now, we substitute \( x = 0 \) into the limit: \[ \lim_{x \to 0} \frac{1}{2\sqrt{1+x}} = \frac{1}{2\sqrt{1+0}} = \frac{1}{2\sqrt{1}} = \frac{1}{2}. \] ### Final Answer Thus, the value of the limit is \[ \frac{1}{2}. \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/(log(1+x)) .

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-sqrt(1-x))/x

Evaluate the following limits : lim_(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(x)

Evaluate the following limits : lim_(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

Evaluate the following limits : lim_(x to 0)(sqrt(x+2)-sqrt(2))/x

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/sinx

Evaluate the following limits : lim_(x to 0)(e^(x)-sinx-1)/x

Evaluate the following limits : lim_(x to 0)(e^(sinx)-1)/x

Evaluate the following limits : lim_(x to 0)((x+1)^(5)-1)/x

Evaluate the following limits : lim_(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a^(2)-x^(2)))/x^(2).

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(2-x)/(sqrt(2+x)-2).

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(sqrt(x+2)-sqrt(2))/x

    Text Solution

    |

  7. Evaluate the following limits : lim(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(...

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a...

    Text Solution

    |

  9. Evaluate the following limits : lim(h to 0)1/h[1/(x+h)-1/x]

    Text Solution

    |

  10. lim(x->2)[1/(x-2)-(2(2x-3))/(x^3-3x^2+2x)]

    Text Solution

    |

  11. Find all possible values of 'a', if : lim(x to a)(x^(9)-a^(9))/(x-a)...

    Text Solution

    |

  12. If (lim)(x->a)(x^3-a^3)/(x-a)=(lim)(x->1)(x^4-1)/(x-1) , find all poss...

    Text Solution

    |

  13. underset(z rarr1)"lim"(2^(1//3)-1)/(z^(1//6)-1)

    Text Solution

    |

  14. Prove that : lim(x to 0)abs(x)/x does not exist

    Text Solution

    |

  15. Prove that : lim(x to 0)x/abs(x) does not exist

    Text Solution

    |

  16. Prove that : lim(x to 0^(+))x/abs(x)=1

    Text Solution

    |

  17. Prove that : lim(x to 0^(-))x/abs(x)=-1.

    Text Solution

    |

  18. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |

  19. Find lim(x to 0)f(x), where f(x)=abs(x)-5.

    Text Solution

    |

  20. Evaluate lim(x to 0)f(x), where : " "f(x)={{:(x/abs(x)",", x ne 0)...

    Text Solution

    |