Home
Class 11
MATHS
Evaluate the following limits : lim(x ...

Evaluate the following limits :
`lim_(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sqrt{1 - x^2} - \sqrt{1 + x^2}}{2x^2}, \] we first substitute \(x = 0\) into the expression: \[ \frac{\sqrt{1 - 0^2} - \sqrt{1 + 0^2}}{2 \cdot 0^2} = \frac{\sqrt{1} - \sqrt{1}}{0} = \frac{0}{0}. \] Since we have an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that if the limit results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator. ### Step 1: Differentiate the numerator and denominator Let \( f(x) = \sqrt{1 - x^2} - \sqrt{1 + x^2} \) and \( g(x) = 2x^2 \). Now we differentiate \( f(x) \) and \( g(x) \): 1. **For \( f(x) \)**: - The derivative of \( \sqrt{1 - x^2} \) using the chain rule is: \[ f'(x) = \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) = -\frac{x}{\sqrt{1 - x^2}}. \] - The derivative of \( \sqrt{1 + x^2} \) is: \[ f'(x) = \frac{1}{2\sqrt{1 + x^2}} \cdot (2x) = \frac{x}{\sqrt{1 + x^2}}. \] - Therefore, the derivative of the numerator is: \[ f'(x) = -\frac{x}{\sqrt{1 - x^2}} - \frac{x}{\sqrt{1 + x^2}} = -x \left( \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 + x^2}} \right). \] 2. **For \( g(x) \)**: - The derivative of \( g(x) = 2x^2 \) is: \[ g'(x) = 4x. \] ### Step 2: Apply L'Hôpital's Rule Now we can rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{-x \left( \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 + x^2}} \right)}{4x}. \] We can simplify this: \[ = \lim_{x \to 0} \frac{-\left( \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1 + x^2}} \right)}{4}. \] ### Step 3: Evaluate the limit as \( x \to 0 \) Substituting \( x = 0 \): \[ = \frac{-\left( \frac{1}{\sqrt{1 - 0^2}} + \frac{1}{\sqrt{1 + 0^2}} \right)}{4} = \frac{-\left( \frac{1}{1} + \frac{1}{1} \right)}{4} = \frac{-2}{4} = -\frac{1}{2}. \] Thus, the limit is \[ \boxed{-\frac{1}{2}}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-sqrt(1-x))/x

lim_(x rarr0)(sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

Evaluate the following limits : lim_(x to 0)(sqrt(1+x)-1)/x

Evaluate the following limits : lim_(x to 0)(sqrt(x+2)-sqrt(2))/x

lim_(xrarr0) (sqrt(1-x^(2))-sqrt(1+x^(2)))/(2x^(2))

Evaluate the following limit: (lim)_(x rarr0)(sqrt(1+x^(2))-sqrt(1-x^(2)))/(x)

Evaluate the following limits : lim_(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(x)

Evaluate the following limits : lim_(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a^(2)-x^(2)))/x^(2).

Evaluate the following limits : lim_(x to infty)(sqrt(x^(2)+x+1)-sqrt(x^(2)+1)) .

Evaluate the following limits: lim_(xrarr0)((sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x)))

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(2-x)/(sqrt(2+x)-2).

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(sqrt(x+2)-sqrt(2))/x

    Text Solution

    |

  7. Evaluate the following limits : lim(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(...

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a...

    Text Solution

    |

  9. Evaluate the following limits : lim(h to 0)1/h[1/(x+h)-1/x]

    Text Solution

    |

  10. lim(x->2)[1/(x-2)-(2(2x-3))/(x^3-3x^2+2x)]

    Text Solution

    |

  11. Find all possible values of 'a', if : lim(x to a)(x^(9)-a^(9))/(x-a)...

    Text Solution

    |

  12. If (lim)(x->a)(x^3-a^3)/(x-a)=(lim)(x->1)(x^4-1)/(x-1) , find all poss...

    Text Solution

    |

  13. underset(z rarr1)"lim"(2^(1//3)-1)/(z^(1//6)-1)

    Text Solution

    |

  14. Prove that : lim(x to 0)abs(x)/x does not exist

    Text Solution

    |

  15. Prove that : lim(x to 0)x/abs(x) does not exist

    Text Solution

    |

  16. Prove that : lim(x to 0^(+))x/abs(x)=1

    Text Solution

    |

  17. Prove that : lim(x to 0^(-))x/abs(x)=-1.

    Text Solution

    |

  18. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |

  19. Find lim(x to 0)f(x), where f(x)=abs(x)-5.

    Text Solution

    |

  20. Evaluate lim(x to 0)f(x), where : " "f(x)={{:(x/abs(x)",", x ne 0)...

    Text Solution

    |