Home
Class 11
MATHS
Find all possible values of 'a', if : ...

Find all possible values of 'a', if :
`lim_(x to a)(x^(9)-a^(9))/(x-a)=lim_(x to 5)(4+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find all possible values of \( a \) such that: \[ \lim_{x \to a} \frac{x^9 - a^9}{x - a} = \lim_{x \to 5} (4 + x) \] ### Step 1: Evaluate the right-hand side limit First, we evaluate the limit on the right-hand side: \[ \lim_{x \to 5} (4 + x) = 4 + 5 = 9 \] ### Step 2: Rewrite the left-hand side limit Now we rewrite the left-hand side limit: \[ \lim_{x \to a} \frac{x^9 - a^9}{x - a} \] Using the formula for the difference of powers, we know that: \[ x^9 - a^9 = (x - a)(x^8 + x^7 a + x^6 a^2 + x^5 a^3 + x^4 a^4 + x^3 a^5 + x^2 a^6 + x a^7 + a^8) \] Thus, we can rewrite the limit as: \[ \lim_{x \to a} \frac{(x - a)(x^8 + x^7 a + x^6 a^2 + x^5 a^3 + x^4 a^4 + x^3 a^5 + x^2 a^6 + x a^7 + a^8)}{x - a} \] ### Step 3: Simplify the limit Since \( x - a \) cancels out, we have: \[ \lim_{x \to a} (x^8 + x^7 a + x^6 a^2 + x^5 a^3 + x^4 a^4 + x^3 a^5 + x^2 a^6 + x a^7 + a^8) \] Now we can substitute \( x = a \): \[ = a^8 + a^7 a + a^6 a^2 + a^5 a^3 + a^4 a^4 + a^3 a^5 + a^2 a^6 + a a^7 + a^8 \] This simplifies to: \[ = 9a^8 \] ### Step 4: Set the limits equal to each other Now we set the two limits equal to each other: \[ 9a^8 = 9 \] ### Step 5: Solve for \( a \) Dividing both sides by 9 gives: \[ a^8 = 1 \] Taking the eighth root of both sides, we find: \[ a = 1 \quad \text{or} \quad a = -1 \] ### Final Answer Thus, the possible values of \( a \) are: \[ a = 1 \quad \text{and} \quad a = -1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (b)|59 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise EXERCISE 13 (c)|47 Videos
  • LIMITS AND DERIVATIVES

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|43 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • LINEAR INEQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

Find all possible values of a if lim_(x to a)(x^(9)-a^(9))/(x-a)=9.

lim_(x rarr3)(x^(2)-9)/(x-3)

lim_(x rarr5)(x^(2)-9x+20)/(x-[x])

lim_(x rarr3)(x^(3)-27)/(x^(2)-9)

lim_(x rarr9)(x^((3)/(2))-27)/(x-9)

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate : lim_(x to 0)(2^(2+x)-9)/x .

lim_(x rarr3)(x^(3)-6x-9)/(x^(4)-81)

The value of lim_(x to 2) (3^(x//2)-3)/(x^(3)-9) is

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

MODERN PUBLICATION-LIMITS AND DERIVATIVES-EXERCISE 13 (a)
  1. Evaluate the following limit: (lim)(x->0)(sqrt(1+x)-sqrt(1-x))/(2x)

    Text Solution

    |

  2. Evaluate the following limits: lim(xto0)((sqrt(2-x)-sqrt(2+x))/(x))

    Text Solution

    |

  3. Evaluate the following limits : lim(x to 0)(sqrt(1+3x)-sqrt(1-3x))/(...

    Text Solution

    |

  4. Evaluate the following limits : lim(x to 0)(sqrt(1+x)-1)/x

    Text Solution

    |

  5. Evaluate the following limits : lim(x to 2)(2-x)/(sqrt(2+x)-2).

    Text Solution

    |

  6. Evaluate the following limits : lim(x to 0)(sqrt(x+2)-sqrt(2))/x

    Text Solution

    |

  7. Evaluate the following limits : lim(x to 0)(sqrt(1-x^(2))-sqrt(1+x^(...

    Text Solution

    |

  8. Evaluate the following limits : lim(x to 0)(sqrt(a^(2)+x^(2))-sqrt(a...

    Text Solution

    |

  9. Evaluate the following limits : lim(h to 0)1/h[1/(x+h)-1/x]

    Text Solution

    |

  10. lim(x->2)[1/(x-2)-(2(2x-3))/(x^3-3x^2+2x)]

    Text Solution

    |

  11. Find all possible values of 'a', if : lim(x to a)(x^(9)-a^(9))/(x-a)...

    Text Solution

    |

  12. If (lim)(x->a)(x^3-a^3)/(x-a)=(lim)(x->1)(x^4-1)/(x-1) , find all poss...

    Text Solution

    |

  13. underset(z rarr1)"lim"(2^(1//3)-1)/(z^(1//6)-1)

    Text Solution

    |

  14. Prove that : lim(x to 0)abs(x)/x does not exist

    Text Solution

    |

  15. Prove that : lim(x to 0)x/abs(x) does not exist

    Text Solution

    |

  16. Prove that : lim(x to 0^(+))x/abs(x)=1

    Text Solution

    |

  17. Prove that : lim(x to 0^(-))x/abs(x)=-1.

    Text Solution

    |

  18. If the function f(x) satisfies lim(x to 1) (f(x)-2)/(x^(2)-1)=pi, then...

    Text Solution

    |

  19. Find lim(x to 0)f(x), where f(x)=abs(x)-5.

    Text Solution

    |

  20. Evaluate lim(x to 0)f(x), where : " "f(x)={{:(x/abs(x)",", x ne 0)...

    Text Solution

    |